User interface language: English | Español

Date November 2010 Marks available 4 Reference code 10N.1.hl.TZ0.3
Level HL only Paper 1 Time zone TZ0
Command term Expand and Simplify Question number 3 Adapted from N/A

Question

Expand and simplify \({\left( {{x^2} - \frac{2}{x}} \right)^4}\).

Markscheme

\({\left( {{x^2} - \frac{2}{x}} \right)^4} = {({x^2})^4} + 4{({x^2})^3}\left( { - \frac{2}{x}} \right) + 6{({x^2})^2}{\left( { - \frac{2}{x}} \right)^2} + 4({x^2}){\left( { - \frac{2}{x}} \right)^3} + {\left( { - \frac{2}{x}} \right)^4}\)     (M1)

\( = {x^8} - 8{x^5} + 24{x^2} - \frac{{32}}{x} + \frac{{16}}{{{x^4}}}\)     A3

Note: Deduct one A mark for each incorrect or omitted term.

 

[4 marks]

Examiners report

Most candidates solved this question correctly with most candidates who explained how they obtained their coefficients using Pascal’s triangle rather than the combination formula.

Syllabus sections

Topic 1 - Core: Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in N\) .
Show 22 related questions

View options