Date | May 2014 | Marks available | 6 | Reference code | 14M.2.hl.TZ2.5 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Find the coefficient of \({x^{ - 2}}\) in the expansion of \({(x - 1)^3}{\left( {\frac{1}{x} + 2x} \right)^6}\).
Markscheme
expanding \({(x - 1)^3} = {x^3} - 3{x^2} + 3x - 1\) A1
expanding \({\left( {\frac{1}{2} + 2x} \right)^6}\) gives
\(64{x^6} + 192{x^4} + 240{x^2} + \frac{{60}}{{{x^2}}} + \frac{{12}}{{{x^4}}} + \frac{1}{{{x^6}}} + 160\) (M1)A1A1
Note: Award (M1) for an attempt at expanding using binomial.
Award A1 for \(\frac{{60}}{{{x^2}}}\).
Award A1 for \(\frac{{12}}{{{x^4}}}\).
\(\frac{{60}}{{{x^2}}} \times - 1 + \frac{{12}}{{{x^4}}} \times - 3{x^2}\) (M1)
Note: Award (M1) only if both terms are considered.
therefore coefficient \({x^{ - 2}}\) is \( - 96\) A1
Note: Accept \( - 96{x^{ - 2}}\)
Note: Award full marks if working with the required terms only without giving the entire expansion.
[6 marks]