User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.2.hl.TZ2.5
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 5 Adapted from N/A

Question

Find the coefficient of \({x^{ - 2}}\) in the expansion of \({(x - 1)^3}{\left( {\frac{1}{x} + 2x} \right)^6}\).

Markscheme

expanding \({(x - 1)^3} = {x^3} - 3{x^2} + 3x - 1\)     A1

expanding \({\left( {\frac{1}{2} + 2x} \right)^6}\) gives

\(64{x^6} + 192{x^4} + 240{x^2} + \frac{{60}}{{{x^2}}} + \frac{{12}}{{{x^4}}} + \frac{1}{{{x^6}}} + 160\)     (M1)A1A1

 

Note:     Award (M1) for an attempt at expanding using binomial.

     Award A1 for \(\frac{{60}}{{{x^2}}}\).

     Award A1 for \(\frac{{12}}{{{x^4}}}\).

 

\(\frac{{60}}{{{x^2}}} \times  - 1 + \frac{{12}}{{{x^4}}} \times  - 3{x^2}\)     (M1)

 

Note:     Award (M1) only if both terms are considered.

 

therefore coefficient \({x^{ - 2}}\) is \( - 96\)     A1

 

Note:     Accept \( - 96{x^{ - 2}}\)

 

Note:     Award full marks if working with the required terms only without giving the entire expansion.

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in N\) .
Show 22 related questions

View options