User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.1.hl.TZ1.12
Level HL only Paper 1 Time zone TZ1
Command term Write down Question number 12 Adapted from N/A

Question

Consider the polynomial P(z)=z510z2+15z6, zC.

The polynomial can be written in the form P(z)=(z1)3(z2+bz+c).

Consider the function q(x)=x510x2+15x6, xR.

Write down the sum and the product of the roots of P(z)=0.

[2]
a.

Show that (z1) is a factor of P(z).

[2]
b.

Find the value of b and the value of c.

[5]
c.

Hence find the complex roots of P(z)=0.

[3]
d.

Show that the graph of y=q(x) is concave up for x>1.

[3]
e.i.

Sketch the graph of y=q(x) showing clearly any intercepts with the axes.

[3]
e.ii.

Markscheme

sum=0     A1

product=6     A1

 

[2 marks]

a.

P(1)=110+156=0     M1A1

(z1) is a factor of P(z)     AG

 

Note:     Accept use of division to show remainder is zero.

 

[2 marks]

b.

METHOD 1

(z1)3(z2+bz+c)=z510z2+15z6     (M1)

by inspection c=6     A1

(z33z2+3z1)(z2+bz+6)=z510z2+15z6     (M1)(A1)

b=3     A1

METHOD 2

α, β are two roots of the quadratic

b=(α+β), c=αβ     (A1)

from part (a) 1+1+1+α+β=0     (M1)

b=3     A1

1×1×1×αβ=6     (M1)

c=6     A1

 

Note:     Award FT if b=7 following through from their sum =10.

 

METHOD 3

(z510z2+15z6)÷(z1)=z4+z3+z29z+6     (M1)A1

 

Note:     This may have been seen in part (b).

 

z4+z3+z29z+6÷(z1)=z3+2z2+3z6     (M1)

z3+2z2+3z6÷(z1)=z2+3z+6     A1A1

[5 marks]

c.

z2+3z+6=0     M1

z=3±9462     M1

=3±152

z=32±i152     A1

(or z=1)

 

Notes:     Award the second M1 for an attempt to use the quadratic formula or to complete the square.

Do not award FT from (c).

 

[3 marks]

d.

d2ydx2=20x320     M1A1

for x>1, 20x320>0 concave up     R1AG

 

[3 marks]

e.i.

M17/5/MATHL/HP1/ENG/TZ1/B12.e.ii/M

x-intercept at (1, 0)     A1

y-intercept at (0, 6)     A1

stationary point of inflexion at (1, 0) with correct curvature either side     A1

[3 marks]

e.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.6
Show 44 related questions

View options