User interface language: English | Español

Date May 2015 Marks available 5 Reference code 15M.1.hl.TZ2.12
Level HL only Paper 1 Time zone TZ2
Command term Determine, Hence, and Show that Question number 12 Adapted from N/A

Question

The cubic equation \({x^3} + p{x^2} + qx + c = 0\), has roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \). By expanding \((x - \alpha )(x - \beta )(x - \gamma )\) show that

(i)     \(p =  - (\alpha  + \beta  + \gamma )\);

(ii)     \(q = \alpha \beta  + \beta \gamma  + \gamma \alpha \);

(iii)     \(c =  - \alpha \beta \gamma \).

[3]
a.

It is now given that \(p =  - 6\) and \(q = 18\) for parts (b) and (c) below.

(i)     In the case that the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \) form an arithmetic sequence, show that one of the roots is \(2\).

(ii)     Hence determine the value of \(c\).

[5]
b.

In another case the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \) form a geometric sequence. Determine the value of \(c\).

[6]
c.

Markscheme

(i)-(iii) given the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \), we have

\({x^3} + p{x^2} + qx + c = (x - \alpha )(x - \beta )(x - \gamma )\)     M1

\( = \left( {{x^2} - (\alpha  + \beta )x + \alpha \beta } \right)(x - \gamma )\)     A1

\( = {x^3} - (\alpha  + \beta  + \gamma ){x^2} + (\alpha \beta  + \beta \gamma  + \gamma \alpha )x - \alpha \beta \gamma \)     A1

comparing coefficients:

\(p =  - (\alpha  + \beta  + \gamma )\)     AG

\(q = (\alpha \beta  + \beta \gamma  + \gamma \alpha )\)     AG

\(c =  - \alpha \beta \gamma \)     AG

[3 marks]

a.

METHOD 1

(i)     Given \( - \alpha  - \beta  - \gamma  =  - 6\)

And \(\alpha \beta  + \beta \gamma  + \gamma \alpha  = 18\)

Let the three roots be \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \)

So \(\beta  - \alpha  = \gamma  - \beta \)     M1

or \(2\beta  = \alpha  + \gamma \)

Attempt to solve simultaneous equations:     M1

\(\beta  + 2\beta  = 6\)     A1

\(\beta  = 2\)     AG

(ii)     \(\alpha  + \gamma  = 4\)

\(2\alpha  + 2\gamma  + \alpha \gamma  = 18\)

\( \Rightarrow {\gamma ^2} - 4\gamma  + 10 = 0\)

\( \Rightarrow \gamma  = \frac{{4 \pm {\text{i}}\sqrt {24} }}{2}\)     (A1)

Therefore \(c =  - \alpha \beta \gamma  =  - \left( {\frac{{4 + {\text{i}}\sqrt {24} }}{2}} \right)\left( {\frac{{4 - {\text{i}}\sqrt {24} }}{2}} \right)2 =  - 20\)     A1

METHOD 2

(i)     let the three roots be \(\alpha ,{\text{ }}\alpha  - d,{\text{ }}\alpha  + d\)     M1

adding roots     M1

to give \(3\alpha  = 6\)     A1

\(\alpha  = 2\)     AG

(ii)     \(\alpha \) is a root, so \({2^3} - 6 \times {2^2} + 18 \times 2 + c = 0\)     M1

\(8 - 24 + 36 + c = 0\)

\(c =  - 20\)     A1

METHOD 3

(i)     let the three roots be \(\alpha ,{\text{ }}\alpha  - d,{\text{ }}\alpha  + d\)     M1

adding roots     M1

to give \(3\alpha  = 6\)     A1

\(\alpha  = 2\)     AG

(ii)     \(q = 18 = 2(2 - d) + (2 - d)(2 + d) + 2(2 + d)\)     M1

\({d^2} =  - 6 \Rightarrow d = \sqrt 6 {\text{i}}\)

\( \Rightarrow c =  - 20\)     A1

[5 marks]

b.

METHOD 1

Given \( - \alpha  - \beta  - \gamma  =  - 6\)

And \(\alpha \beta  + \beta \gamma  + \gamma \alpha  = 18\)

Let the three roots be \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \).

So \(\frac{\beta }{\alpha } = \frac{\gamma }{\beta }\)     M1

or \({\beta ^2} = \alpha \gamma \)

Attempt to solve simultaneous equations:     M1

\(\alpha \beta  + \gamma \beta  + {\beta ^2} = 18\)

\(\beta (\alpha  + \beta  + \gamma ) = 18\)

\(6\beta  = 18\)

\(\beta  = 3\)     A1

\(\alpha  + \gamma  = 3,{\text{ }}\alpha  = \frac{9}{\gamma }\)

\( \Rightarrow {\gamma ^2} - 3\gamma  + 9 = 0\)

\( \Rightarrow \gamma  = \frac{{3 \pm {\text{i}}\sqrt {27} }}{2}\)     (A1)(A1)

Therefore \(c =  - \alpha \beta \gamma  =  - \left( {\frac{{3 + {\text{i}}\sqrt {27} }}{2}} \right)\left( {\frac{{3 - {\text{i}}\sqrt {27} }}{2}} \right)3 =  - 27\)     A1

METHOD 2

let the three roots be \(a,{\text{ }}ar,{\text{ }}a{r^2}\)     M1

attempt at substitution of \(a,{\text{ }}ar,{\text{ }}a{r^2}\) and \(p\) and \(q\) into equations from (a)     M1

\(6 = a + ar + a{r^2}\left( { = a(1 + r + {r^2})} \right)\)     A1

\(18 = {a^2}r + {a^2}{r^3} + {a^2}{r^2}\left( { = {a^2}r(1 + r + {r^2})} \right)\)     A1

therefore \(3 = ar\)     A1

therefore \(c =  - {a^3}{r^3} =  - {3^3} =  - 27\)     A1

[6 marks]

Total [14 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Core: Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 58 related questions

View options