User interface language: English | Español

Date May 2015 Marks available 3 Reference code 15M.1.hl.TZ1.7
Level HL only Paper 1 Time zone TZ1
Command term State Question number 7 Adapted from N/A

Question

Let \(p(x) = 2{x^5} + {x^4} - 26{x^3} - 13{x^2} + 72x + 36,{\text{ }}x \in \mathbb{R}\).

For the polynomial equation \(p(x) = 0\), state

(i)     the sum of the roots;

(ii)     the product of the roots.

[3]
a.

A new polynomial is defined by \(q(x) = p(x + 4)\).

Find the sum of the roots of the equation \(q(x) = 0\).

[2]
b.

Markscheme

(i)     \(\left( { - \frac{{{a_{n - 1}}}}{{{a_n}}} = } \right) - \frac{1}{2}\)     A1

(ii)     \(\left( {{{( - 1)}^n}\frac{{{a_0}}}{{{a_n}}} = } \right) - \frac{{36}}{2} = ( - 18)\)     A1A1

 

Note:     First A1 is for the negative sign.

[3 marks]

a.

METHOD 1

if \(\lambda \) satisfies \(p(\lambda ) = 0\) then \(q(\lambda  - 4) = 0\)

so the roots of \(q(x)\) are each \(4\) less than the roots of \(p(x)\)     (R1)

so sum of roots is \( - \frac{1}{2} - 4 \times 5 =  - 20.5\)     A1

METHOD 2

\(p(x + 4) = 2{x^5} + 2 \times 5 \times 4{x^4} \ldots  + {x^4} \ldots  = 2{x^5} + 41{x^4} \ldots \)     (M1)

so sum of roots is \( - \frac{{41}}{2} =  - 20.5\)     A1

[2 marks]

Tofal [5 marks]

b.

Examiners report

Both parts fine if they used the formula, some tried to use the quadratic equivalent formula. Surprisingly some even found all the roots.

a.

Some notation problems for weaker candidates. Good candidates used either of the methods shown in the Markscheme.

b.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.6 » Sum and product of the roots of polynomial equations.

View options