Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2015 Marks available 6 Reference code 15M.1.hl.TZ2.12
Level HL only Paper 1 Time zone TZ2
Command term Determine Question number 12 Adapted from N/A

Question

The cubic equation x3+px2+qx+c=0, has roots α, β, γ. By expanding (xα)(xβ)(xγ) show that

(i)     p=(α+β+γ);

(ii)     q=αβ+βγ+γα;

(iii)     c=αβγ.

[3]
a.

It is now given that p=6 and q=18 for parts (b) and (c) below.

(i)     In the case that the three roots α, β, γ form an arithmetic sequence, show that one of the roots is 2.

(ii)     Hence determine the value of c.

[5]
b.

In another case the three roots α, β, γ form a geometric sequence. Determine the value of c.

[6]
c.

Markscheme

(i)-(iii) given the three roots α, β, γ, we have

x3+px2+qx+c=(xα)(xβ)(xγ)     M1

=(x2(α+β)x+αβ)(xγ)     A1

=x3(α+β+γ)x2+(αβ+βγ+γα)xαβγ     A1

comparing coefficients:

p=(α+β+γ)     AG

q=(αβ+βγ+γα)     AG

c=αβγ     AG

[3 marks]

a.

METHOD 1

(i)     Given αβγ=6

And αβ+βγ+γα=18

Let the three roots be α, β, γ

So βα=γβ     M1

or 2β=α+γ

Attempt to solve simultaneous equations:     M1

β+2β=6     A1

β=2     AG

(ii)     α+γ=4

2α+2γ+αγ=18

γ24γ+10=0

γ=4±i242     (A1)

Therefore c=αβγ=(4+i242)(4i242)2=20     A1

METHOD 2

(i)     let the three roots be α, αd, α+d     M1

adding roots     M1

to give 3α=6     A1

α=2     AG

(ii)     α is a root, so 236×22+18×2+c=0     M1

824+36+c=0

c=20     A1

METHOD 3

(i)     let the three roots be α, αd, α+d     M1

adding roots     M1

to give 3α=6     A1

α=2     AG

(ii)     q=18=2(2d)+(2d)(2+d)+2(2+d)     M1

d2=6d=6i

c=20     A1

[5 marks]

b.

METHOD 1

Given αβγ=6

And αβ+βγ+γα=18

Let the three roots be α, β, γ.

So βα=γβ     M1

or β2=αγ

Attempt to solve simultaneous equations:     M1

αβ+γβ+β2=18

β(α+β+γ)=18

6β=18

β=3     A1

α+γ=3, α=9γ

γ23γ+9=0

γ=3±i272     (A1)(A1)

Therefore c=αβγ=(3+i272)(3i272)3=27     A1

METHOD 2

let the three roots be a, ar, ar2     M1

attempt at substitution of a, ar, ar2 and p and q into equations from (a)     M1

6=a+ar+ar2(=a(1+r+r2))     A1

18=a2r+a2r3+a2r2(=a2r(1+r+r2))     A1

therefore 3=ar     A1

therefore c=a3r3=33=27     A1

[6 marks]

Total [14 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Core: Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 58 related questions

View options