User interface language: English | Español

Date November 2015 Marks available 2 Reference code 15N.1.hl.TZ0.10
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 10 Adapted from N/A

Question

A given polynomial function is defined as \(f(x) = {a_0} + {a_1}x + {a_2}{x^2} +  \ldots  + {a_n}{x^n}\). The roots of the polynomial equation \(f(x) = 0\) are consecutive terms of a geometric sequence with a common ratio of \(\frac{1}{2}\) and first term 2.

Given that \({a_{n - 1}} =  - 63\) and \({a_n} = 16\) find

the degree of the polynomial;

[4]
a.

the value of \({a_0}\).

[2]
b.

Markscheme

the sum of the roots of the polynomial \( = \frac{{63}}{{16}}\)     (A1)

\(2\left( {\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}}} \right) = \frac{{63}}{{16}}\)     M1A1

 

Note:     The formula for the sum of a geometric sequence must be equated to a value for the M1 to be awarded.

 

\(1 - {\left( {\frac{1}{2}} \right)^n} = \frac{{63}}{{64}} \Rightarrow {\left( {\frac{1}{2}} \right)^n} = \frac{1}{{64}}\)

\(n = 6\)     A1

[4 marks]

a.

\(\frac{{{a_0}}}{{{a_n}}} = 2 \times 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times \frac{1}{{16}},{\text{ (}}{{\text{a}}_n} = 16)\)     M1

\({a_0} = 16 \times 2 \times 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times \frac{1}{{16}}\)

\({a_0} = {2^{ - 5}}\;\;\;\left( { = \frac{1}{{32}}} \right)\)     A1

[2 marks]

Total [6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.6 » Sum and product of the roots of polynomial equations.

View options