User interface language: English | Español

Date May 2015 Marks available 2 Reference code 15M.2.hl.TZ2.8
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 8 Adapted from N/A

Question

Farmer Bill owns a rectangular field, 10 m by 4 m. Bill attaches a rope to a wooden post at one corner of his field, and attaches the other end to his goat Gruff.

Given that the rope is 5 m long, calculate the percentage of Bill’s field that Gruff is able to graze. Give your answer correct to the nearest integer.

[4]
a.

Bill replaces Gruff’s rope with another, this time of length \(a,{\text{ }}4 < a < 10\), so that Gruff can now graze exactly one half of Bill’s field.

Show that \(a\) satisfies the equation

\[{a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16}  = 40.\]

[4]
b.

Find the value of \(a\).

[2]
c.

Markscheme

EITHER

area of triangle \( = \frac{1}{2} \times 3 \times 4\;\;\;( = 6)\)     A1

area of sector \( = \frac{1}{2}\arcsin \left( {\frac{4}{5}} \right) \times {5^2}\;\;\;( = 11.5911 \ldots )\)     A1

OR

\(\int_0^4 {\sqrt {25 - {x^2}} {\text{d}}x} \)     M1A1

THEN

total area \( = 17.5911 \ldots {\text{ }}{{\text{m}}^2}\)     (A1)

percentage \( = \frac{{17.5911 \ldots }}{{40}} \times 100 = 44\% \)     A1

[4 marks]

a.

METHOD 1

area of triangle \( = \frac{1}{2} \times 4 \times \sqrt {{a^2} - 16} \)     A1

\(\theta  = \arcsin \left( {\frac{4}{a}} \right)\)     (A1)

area of sector \( = \frac{1}{2}{r^2}\theta  = \frac{1}{2}{a^2}\arcsin \left( {\frac{4}{a}} \right)\)     A1

therefore total area \( = 2\sqrt {{a^2} - 16}  + \frac{1}{2}{a^2}\arcsin \left( {\frac{4}{a}} \right) = 20\)     A1

rearrange to give: \({a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16}  = 40\)     AG

METHOD 2

\(\int_0^4 {\sqrt {{a^2} - {x^2}} {\text{d}}x = 20} \)     M1

use substitution \(x = a\sin \theta ,{\text{ }}\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = a\cos \theta \)

\(\int_0^{\arcsin \left( {\frac{4}{a}} \right)} {{a^2}{{\cos }^2}\theta {\text{d}}\theta  = 20} \)

\(\frac{{{a^2}}}{2}\int_0^{\arcsin \left( {\frac{4}{a}} \right)} {(\cos 2\theta  + 1){\text{d}}\theta  = 20} \)     M1

\({a^2}\left[ {\left( {\frac{{\sin 2\theta }}{2} + \theta } \right)} \right]_0^{\arcsin \left( {\frac{4}{a}} \right)} = 40\)     A1

\({a^2}\left[ {(\sin \theta \cos \theta  + \theta } \right]_0^{\arcsin \left( {\frac{4}{a}} \right)} = 40\)

\({a^2}\arcsin \left( {\frac{4}{a}} \right) + {a^2}\left( {\frac{4}{a}} \right)\sqrt {\left( {1 - {{\left( {\frac{4}{a}} \right)}^2}} \right)}  = 40\)     A1

\({a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16}  = 40\)     AG

[4 marks]

b.

solving using \({\text{GDC}} \Rightarrow a = 5.53{\text{ cm}}\)     A2

[2 marks]

Total [10 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.6 » Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach.

View options