Date | November 2017 | Marks available | 5 | Reference code | 17N.2.hl.TZ0.7 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
In the quadratic equation \(7{x^2} - 8x + p = 0,{\text{ }}(p \in \mathbb{Q})\), one root is three times the other root.
Find the value of \(p\).
Markscheme
METHOD 1
let roots be \(\alpha \) and \(3\alpha \) (M1)
sum of roots \((4\alpha ) = \frac{8}{7}\) M1
\( \Rightarrow \alpha = \frac{2}{7}\) A1
EITHER
product of roots \((3{\alpha ^2}) = \frac{p}{7}\) M1
\(p = 21{\alpha ^2} = 21 \times \frac{4}{{49}}\)
OR
\(7{\left( {\frac{2}{7}} \right)^2} - 8\left( {\frac{2}{7}} \right) + p = 0\) M1
\(\frac{4}{7} - \frac{{16}}{7} + p = 0\)
THEN
\( \Rightarrow p = \frac{{12}}{7}{\text{ }}( = 1.71)\) A1
METHOD 2
\(x = \frac{{8 \pm \sqrt {64 - 28p} }}{{14}}\) (M1)
\(\frac{{8 + \sqrt {64 - 28p} }}{{14}} = 3\left( {\frac{{8 - \sqrt {64 - 28p} }}{{14}}} \right)\) M1A1
\(8 + \sqrt {64 - 28p} = 24 - 3\sqrt {64 - 28p} \Rightarrow \sqrt {64 - 28p} = 4\) (M1)
\(p = \frac{{12}}{7}{\text{ }}( = 1.71)\) A1
[5 marks]