DP Further Mathematics HL Questionbank
5.7
Path: |
Description
[N/A]Directly related questions
- 16M.2.hl.TZ0.2a: Use l’Hôpital’s rule to show that...
- 17M.1.hl.TZ0.9b.ii: Determine the value of \({I_3}\), giving your answer as a multiple of \({{\text{e}}^{ - 1}}\).
- 17M.1.hl.TZ0.9b.i: Show that, for \(n \in {\mathbb{Z}^ +...
- 17M.1.hl.TZ0.9a: Using l’Hôpital’s rule, show...
- 11M.2.hl.TZ0.5a: Find the value of \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} - \cot x} \right)\) .
- 13M.1.hl.TZ0.4b: (i) Show that the solution \(y = f(x)\) that satisfies the condition...
- 08M.2.hl.TZ0.2A.e: Hence, or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }}\) .
- 07M.1.hl.TZ0.2b: Calculate the following...
- 07M.1.hl.TZ0.2a: Calculate the following limit \(\mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}\) .
- 12M.1.hl.TZ0.3b: Consider \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \cos x}}{{{x^n}}}\) , where...
- SPNone.1.hl.TZ0.1: Using l’Hôpital’s Rule, determine the value...
- 14M.2.hl.TZ0.8: (a) (i) Using l’Hôpital’s rule, show...
- 15M.1.hl.TZ0.1: Use l’Hôpital’s rule to find \(\mathop {\lim }\limits_{x \to 0} (\csc x - \cot x)\).
Sub sections and their related questions
The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\) .
- 11M.2.hl.TZ0.5a: Find the value of \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} - \cot x} \right)\) .
- 13M.1.hl.TZ0.4b: (i) Show that the solution \(y = f(x)\) that satisfies the condition...
- 07M.1.hl.TZ0.2a: Calculate the following limit \(\mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}\) .
- 07M.1.hl.TZ0.2b: Calculate the following...
- 12M.1.hl.TZ0.3b: Consider \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \cos x}}{{{x^n}}}\) , where...
- SPNone.1.hl.TZ0.1: Using l’Hôpital’s Rule, determine the value...
- 14M.2.hl.TZ0.8: (a) (i) Using l’Hôpital’s rule, show...
- 16M.2.hl.TZ0.2a: Use l’Hôpital’s rule to show that...
Using l’Hôpital’s rule or the Taylor series.
- 11M.2.hl.TZ0.5a: Find the value of \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} - \cot x} \right)\) .
- 08M.2.hl.TZ0.2A.e: Hence, or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }}\) .
- 15M.1.hl.TZ0.1: Use l’Hôpital’s rule to find \(\mathop {\lim }\limits_{x \to 0} (\csc x - \cot x)\).
- 16M.2.hl.TZ0.2a: Use l’Hôpital’s rule to show that...