User interface language: English | Español

Date None Specimen Marks available 6 Reference code SPNone.1.hl.TZ0.1
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 1 Adapted from N/A

Question

QUESTION 1

[[N/A]]
.

QUESTION 1

[[N/A]]
.

Using l’Hôpital’s Rule, determine the value of\[\mathop {\lim }\limits_{x \to 0} \frac{{\tan x - x}}{{1 - \cos x}} .\]

[6]
.

Markscheme

MARKSCHEME 1

.

MARKSCHEME 1

.

\(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x - x}}{{1 - \cos x}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\sec }^2}x - 1}}{{\sin x}}\)     M1A1A1

this still gives \(\frac{0}{0}\)

EITHER

repeat the process     M1

\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\sec }^2}x\tan x}}{{\cos x}}\)     A1

\( = 0\)     A1

OR

\( = \mathop {\lim }\limits_{x \to 0} \frac{{{{\tan }^2}x}}{{\sin x}}\)     M1

\( = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{{{{\cos }^2}x}}\)     A1

\( = 0\)     A1

[6 marks]

.

Examiners report

[N/A]
.
[N/A]
.
[N/A]
.

Syllabus sections

Topic 5 - Calculus » 5.7 » The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\) .

View options