Date | May 2008 | Marks available | 2 | Reference code | 08M.2.hl.TZ0.2 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Hence or otherwise | Question number | 2 | Adapted from | N/A |
Question
The function \(f\) is defined by \(f(x) = \ln (1 + \sin x)\) .
When a scientist measures the concentration \(\mu \) of a solution, the measurement obtained may be assumed to be a normally distributed random variable with mean \(\mu \) and standard deviation \(1.6\).
Show that \(f''(x) = \frac{{ - 1}}{{1 + \sin x}}\) .
Determine the Maclaurin series for \(f(x)\) as far as the term in \({x^4}\) .
Deduce the Maclaurin series for \(\ln (1 - \sin x)\) as far as the term in \({x^4}\) .
By combining your two series, show that \(\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} + \ldots \) .
Hence, or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }}\) .
He makes 5 independent measurements of the concentration of a particular solution and correctly calculates the following confidence interval for \(\mu \) .
[\(22.7\) , \(26.1\)]
Determine the confidence level of this interval.
He is now given a different solution and is asked to determine a \(95\%\) confidence interval for its concentration. The confidence interval is required to have a width less than \(2\). Find the minimum number of independent measurements required.
Markscheme
\(f'(x) = \frac{{\cos x}}{{1 + \sin x}}\) M1A1
\(f''(x) = \frac{{ - \sin x(1 + \sin x) - {{\cos }^2}x}}{{{{(1 + \sin x)}^2}}}\) M1
\( = \frac{{ - \sin x - 1}}{{{{(1 + \sin x)}^2}}}\) A1
\( = \frac{{ - 1}}{{1 + \sin x}}\) AG
[4 marks]
\(f'''(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}}\) A1
\({f^{iv}}(x) = \frac{{ - \sin x{{(1 + \sin x)}^2} - 2(1 + \sin x){{\cos }^2}x}}{{{{(1 + \sin x)}^4}}}\) A1
\(f(0) = 0\) , \(f'(0) = 1\) , \(f''(0) = - 1\) , \(f'''(0) = 1\) , \({f^{iv}}(0) = - 2\) (A2)
Note: Award A1 for 2 errors and A0 for more than 2 errors.
\(\ln (1 + \sin x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} + \ldots \) M1A1
[6 marks]
\(\ln (1 - \sin x) = \ln (1 + \sin ( - x)) = - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} + \ldots \) M1A1
[2 marks]
Adding, M1
\(\ln (1 - {\sin ^2}x) = \ln {\cos ^2}x\) A1
\( = - {x^2} - \frac{{{x^4}}}{6} + \ldots \) A1
\(\ln \cos x = - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{12}} + \ldots \) A1
\(\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} + \ldots \) AG
[4 marks]
\(\frac{{\ln \sec x}}{{x\sqrt x }} = \frac{{\sqrt x }}{2} + \frac{{{x^2}\sqrt x }}{{12}} + \ldots \) M1
Limit \( = 0\) A1
[2 marks]
Interval width \( = 26.1 - 22.7 = 3.4\)
So \(3.4 = 2z \times \frac{{1.6}}{{\sqrt 5 }}\) M1A1
\(z = 2.375 \ldots \) A1
Probability \( = 0.9912\) A1
Confidence level \( = 2 \times 0.4912 = 98.2\% \) A1
[5 marks]
\(z\)-value \( = 1.96\) A1
We require
\(2 \times \frac{{1.96 \times 1.6}}{{\sqrt n }} < 2\) M1A1
Whence \(n > 9.83\) A1
So we need \(n = 10\) A1
Note: Accept \( = \) signs throughout.
[5 marks]