Date | May 2017 | Marks available | 5 | Reference code | 17M.1.hl.TZ0.9 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 9 | Adapted from | N/A |
Question
Let
\({I_n} = \int_1^\infty {{x^n}{{\text{e}}^{ - x}}{\text{d}}x} \) where \(n \in \mathbb{N}\).
Using l’Hôpital’s rule, show that
\(\mathop {\lim }\limits_{x \to \infty } {x^n}{{\text{e}}^{ - x}} = 0\) where \(n \in \mathbb{N}\).
Show that, for \(n \in {\mathbb{Z}^ + }\),
\[{I_n} = \alpha {{\text{e}}^{ - 1}} + \beta n{I_{n - 1}}\]
where \(\alpha \), \(\beta \) are constants to be determined.
Determine the value of \({I_3}\), giving your answer as a multiple of \({{\text{e}}^{ - 1}}\).
Markscheme
consider \(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^x}}}\) M1
its value is \(\frac{\infty }{\infty }\) so we use l’Hôpital’s rule
\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{n{x^{n - 1}}}}{{{{\text{e}}^x}}}\) (A1)
its value is still \(\frac{\infty }{\infty }\) so we need to differentiate numerator and denominator a further \(n - 1\) times (R1)
this gives \(\mathop {\lim }\limits_{x \to \infty } \frac{{n!}}{{{{\text{e}}^x}}}\) A1
since the numerator is finite and the denominator \( \to \infty \), the limit is zero AG
[4 marks]
attempt at integration by parts \(\left( {{I_n} = - \int_1^\infty {{x^n}{\text{d}}({{\text{e}}^{ - x}})} } \right)\) M1
\({I_n} = - [{x^n}{{\text{e}}^{ - x}}]_1^\infty + n\int_1^\infty {{x^{n - 1}}{{\text{e}}^{ - x}}{\text{d}}x} \) A1A1
\( = {{\text{e}}^{ - 1}} + n{I_{n - 1}}\) A1
\(\alpha = \beta = 1\)
[9 marks]
\({I_3} = {{\text{e}}^{ - 1}} + 3{I_2}\) M1
\( = {{\text{e}}^{ - 1}} + 3({{\text{e}}^{ - 1}} + 2{I_1})\) A1
\( = 4{{\text{e}}^{ - 1}} + 6({{\text{e}}^{ - 1}} + {I_0})\) A1
\( = 4{{\text{e}}^{ - 1}} + 6{{\text{e}}^{ - 1}} + 6\int_1^\infty {{{\text{e}}^{ - x}}{\text{d}}x} \)
\( = 10{{\text{e}}^{ - 1}} - 6[{{\text{e}}^{ - x}}]_1^\infty \) A1
\( = 16{{\text{e}}^{ - 1}}\) A1
[9 marks]