User interface language: English | Español

Date May 2016 Marks available 3 Reference code 16M.2.hl.TZ0.2
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

The random variable \(X\) has probability density function given by

\[f(x) = \left\{ {\begin{array}{*{20}{l}}
{x{{\text{e}}^{ - x}},}&{{\text{for }}x \geqslant 0,} \\
{0,}&{{\text{otherwise}}}
\end{array}} \right..\]

A sample of size 50 is taken from the distribution of \(X\).

Use l’Hôpital’s rule to show that \(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^3}}}{{{{\text{e}}^x}}} = 0\).

[3]
a.

(i)     Find \({\text{E}}({X^2})\).

(ii)     Show that \({\text{Var}}(X) = 2\).

[10]
b.

State the central limit theorem.

[2]
c.

Find the probability that the sample mean is less than 2.3.

[2]
d.

Markscheme

attempt to apply l’Hôpital’s rule     M1

\(\mathop {\lim }\limits_{x \to \infty } \frac{{3{x^2}}}{{{{\text{e}}^x}}}\)    A1

then \(\mathop {\lim }\limits_{x \to \infty } \frac{{6x}}{{{{\text{e}}^x}}}\)

then \(\mathop {\lim }\limits_{x \to \infty } \frac{6}{{{{\text{e}}^x}}}\)     A1

\( = 0\)    AG

[3 marks]

a.

(i)     \({\text{E}}({X^2}) = \mathop {\lim }\limits_{R \to \infty } \int\limits_0^R {{x^3}{{\text{e}}^{ - x}}{\text{d}}x} \)       M1

attempt at integration by parts      M1

the integral \( = [ - {x^3}{{\text{e}}^{ - x}}]_0^R + \mathop \smallint \limits_0^R 3{x^2}{{\text{e}}^{ - x}}{\text{d}}x\)       A1A1

\( = [ - {x^3}{{\text{e}}^{ - x}}]_0^R + [ - 3{x^2}{{\text{e}}^{ - x}}]_0^R + \int\limits_0^R {6x{{\text{e}}^{ - x}}{\text{d}}x} \)     M1

\( = [ - {x^3}{{\text{e}}^{ - x}}]_0^R + [ - 3{x^2}{{\text{e}}^{ - x}}]_0^R + [ - 6x{{\text{e}}^{ - x}}]_0^R + \int\limits_0^R {6{{\text{e}}^{ - x}}{\text{d}}x} \)     A1

\( = [ - {x^3}{{\text{e}}^{ - x}}]_0^R + [ - 3{x^2}{{\text{e}}^{ - x}}]_0^R + [ - 6x{{\text{e}}^{ - x}}]_0^R + [ - 6{{\text{e}}^{ - x}}]_0^R\)      A1

\( = 6\) when \(R \to \infty \)       R1

 

(ii)     \({\text{E}}(X) = 2\)      A1

\({\text{Var}}(X) = {\text{E}}({X^2}) - {\left( {{\text{E}}(X)} \right)^2} = 6 - {2^2}\)    M1

\( = 2\)    AG

[10 marks]

b.

if a random sample of size \(n\) is taken from any distribution \(X\), with \({\text{E}}(X) = \mu \) and \({\text{Var}}(X) = {\sigma ^2}\), then, for large n,     A1

the sample mean \(\bar X\) has approximate distribution \({\text{N}}\left( {\mu ,{\text{ }}\frac{{{\sigma ^2}}}{n}} \right)\)     A1

[2 marks]

c.

\(\bar X \sim {\text{N}}\left( {2,{\text{ }}\frac{2}{{50}} = {{(0.2)}^2}} \right)\)    (A1)

\({\text{P}}(\bar X < 2.3) = \left( {{\text{P}}(Z < 1.5)} \right) = 0.933\)    A1

[2 marks]

d.

Examiners report

[N/A]
a.

In part (b) the infinite upper limit was rarely treated rigorously.

b.

In answering part (c) many failed to say that the Central Limit Theorem is valid for large samples and for any initial distribution. The parameters of the distribution were often not stated.

c.
[N/A]
d.

Syllabus sections

Topic 5 - Calculus » 5.7 » The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\) .

View options