User interface language: English | Español

Date May 2007 Marks available 3 Reference code 07M.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Calculate Question number 2 Adapted from N/A

Question

Calculate the following limit

\(\mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}\) .

[3]
a.

Calculate the following limit

\(\mathop {\lim }\limits_{x \to 0} \frac{{{{(1 + {x^2})}^{\frac{3}{2}}} - 1}}{{\ln (1 + x) - x}}\) .

[5]
b.

Markscheme

\(\mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{{2^x}\ln 2}}{1}\)     M1A1

\( = \ln 2\)     A1

[3 marks]

a.

EITHER

\(\mathop {\lim }\limits_{x \to 0} \frac{{{{(1 + {x^2})}^{\frac{3}{2}}} - 1}}{{\ln (1 + x) - x}} = \mathop {\lim }\limits_{x \to 0} \frac{{3x{{(1 + {x^2})}^{\frac{1}{2}}}}}{{\frac{1}{{1 + x}} - 1}}\)     M1A1

\( = \mathop {\lim }\limits_{x \to 0} \frac{{3x{{(1 + {x^2})}^{\frac{1}{2}}}(1 + x)}}{{ - x}}\)     A1A1

\( = - 3\)     A1

OR

\({(1 + {x^2})^{\frac{3}{2}}} - 1 = 1 + \frac{3}{2}{x^2} +  \ldots  - 1 = \frac{3}{2}{x^2} +  \ldots \)     M1A1

\(\ln (1 + x) - x = x - \frac{1}{2}{x^2} +  \ldots  - x = - \frac{1}{2}{x^2} +  \ldots \)     M1A1

Limit \( = - 3\)     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Calculus » 5.7 » The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\) .

View options