Processing math: 5%

User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 9 Adapted from N/A

Question

Let

In=1xnexdx where nN.

Using l’Hôpital’s rule, show that

lim where n \in \mathbb{N}.

[4]
a.

Show that, for n \in {\mathbb{Z}^ + },

{I_n} = \alpha {{\text{e}}^{ - 1}} + \beta n{I_{n - 1}}

where \alpha , \beta are constants to be determined.

[4]
b.i.

Determine the value of {I_3}, giving your answer as a multiple of {{\text{e}}^{ - 1}}.

[5]
b.ii.

Markscheme

consider \mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^x}}}     M1

its value is \frac{\infty }{\infty } so we use l’Hôpital’s rule

\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{n{x^{n - 1}}}}{{{{\text{e}}^x}}}     (A1)

its value is still \frac{\infty }{\infty } so we need to differentiate numerator and denominator a further n - 1 times     (R1)

this gives \mathop {\lim }\limits_{x \to \infty } \frac{{n!}}{{{{\text{e}}^x}}}     A1

since the numerator is finite and the denominator \to \infty , the limit is zero     AG

[4 marks]

a.

attempt at integration by parts \left( {{I_n} =  - \int_1^\infty  {{x^n}{\text{d}}({{\text{e}}^{ - x}})} } \right)     M1

{I_n} =  - [{x^n}{{\text{e}}^{ - x}}]_1^\infty  + n\int_1^\infty  {{x^{n - 1}}{{\text{e}}^{ - x}}{\text{d}}x}     A1A1

= {{\text{e}}^{ - 1}} + n{I_{n - 1}}     A1

\alpha  = \beta  = 1

[9 marks]

b.i.

{I_3} = {{\text{e}}^{ - 1}} + 3{I_2}     M1

= {{\text{e}}^{ - 1}} + 3({{\text{e}}^{ - 1}} + 2{I_1})     A1

= 4{{\text{e}}^{ - 1}} + 6({{\text{e}}^{ - 1}} + {I_0})     A1

= 4{{\text{e}}^{ - 1}} + 6{{\text{e}}^{ - 1}} + 6\int_1^\infty  {{{\text{e}}^{ - x}}{\text{d}}x}

= 10{{\text{e}}^{ - 1}} - 6[{{\text{e}}^{ - x}}]_1^\infty     A1

= 16{{\text{e}}^{ - 1}}     A1

[9 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 5 - Calculus » 5.7

View options