Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ0.9 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 9 | Adapted from | N/A |
Question
Let
In=∫∞1xne−xdx where n∈N.
Using l’Hôpital’s rule, show that
lim where n \in \mathbb{N}.
Show that, for n \in {\mathbb{Z}^ + },
{I_n} = \alpha {{\text{e}}^{ - 1}} + \beta n{I_{n - 1}}
where \alpha , \beta are constants to be determined.
Determine the value of {I_3}, giving your answer as a multiple of {{\text{e}}^{ - 1}}.
Markscheme
consider \mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^x}}} M1
its value is \frac{\infty }{\infty } so we use l’Hôpital’s rule
\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{n{x^{n - 1}}}}{{{{\text{e}}^x}}} (A1)
its value is still \frac{\infty }{\infty } so we need to differentiate numerator and denominator a further n - 1 times (R1)
this gives \mathop {\lim }\limits_{x \to \infty } \frac{{n!}}{{{{\text{e}}^x}}} A1
since the numerator is finite and the denominator \to \infty , the limit is zero AG
[4 marks]
attempt at integration by parts \left( {{I_n} = - \int_1^\infty {{x^n}{\text{d}}({{\text{e}}^{ - x}})} } \right) M1
{I_n} = - [{x^n}{{\text{e}}^{ - x}}]_1^\infty + n\int_1^\infty {{x^{n - 1}}{{\text{e}}^{ - x}}{\text{d}}x} A1A1
= {{\text{e}}^{ - 1}} + n{I_{n - 1}} A1
\alpha = \beta = 1
[9 marks]
{I_3} = {{\text{e}}^{ - 1}} + 3{I_2} M1
= {{\text{e}}^{ - 1}} + 3({{\text{e}}^{ - 1}} + 2{I_1}) A1
= 4{{\text{e}}^{ - 1}} + 6({{\text{e}}^{ - 1}} + {I_0}) A1
= 4{{\text{e}}^{ - 1}} + 6{{\text{e}}^{ - 1}} + 6\int_1^\infty {{{\text{e}}^{ - x}}{\text{d}}x}
= 10{{\text{e}}^{ - 1}} - 6[{{\text{e}}^{ - x}}]_1^\infty A1
= 16{{\text{e}}^{ - 1}} A1
[9 marks]