Date | May 2014 | Marks available | 27 | Reference code | 14M.2.hl.TZ0.8 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Deduce, Determine, Find, Prove that, and Show that | Question number | 8 | Adapted from | N/A |
Question
(a) (i) Using l’Hôpital’s rule, show that
\[\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^{\lambda x}}}} = 0;{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}\lambda \in {\mathbb{R}^ + }\]
(ii) Using mathematical induction on \(n\), prove that
\[\int_0^\infty {{x^n}{{\text{e}}^{ - \lambda x}}{\text{d}}x = \frac{{n!}}{{{\lambda ^{n + 1}}}};{\text{ }}} n \in \mathbb{N},{\text{ }}\lambda \in {\mathbb{R}^ + }\]
(b) The random variable \(X\) has probability density function
\[f(x) = \left\{ \begin{array}{l}\frac{{{\lambda ^{n + 1}}{x^n}{{\rm{e}}^{ - \lambda x}}}}{{n!}}x \ge 0,n \in {\mathbb{Z}^ + },\lambda \in {\mathbb{R}^ + }\\{\rm{otherwise}}\end{array} \right.\]
Giving your answers in terms of \(n\) and \(\lambda \), determine
(i) \({\text{E}}(X)\);
(ii) the mode of \(X\).
(c) Customers arrive at a shop such that the number of arrivals in any interval of duration \(d\) hours follows a Poisson distribution with mean \(8d\). The third customer on a particular day arrives \(T\) hours after the shop opens.
(i) Show that \({\text{P}}(T > t) = {{\text{e}}^{ - 8t}}\left( {1 + 8t + 32{t^2}} \right)\).
(ii) Find an expression for the probability density function of \(T\).
(iii) Deduce the mean and the mode of \(T\).
Markscheme
(a) (i) using l’Hopital’s rule once,
\(\mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^{\lambda x}}}} = \mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{n{x^{n - 1}}}}{{\lambda {{\text{e}}^{\lambda x}}}}\) (A1)(A1)
Note: Award A1 for numerator, A1 for denominator.
if \(n > 1\), this still gives \(\frac{\infty }{\infty }\) so differentiate again giving
\(\mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{n(n - 1){x^{n - 2}}}}{{{\lambda ^2}{{\text{e}}^{\lambda x}}}}\) (A1)
if \(n > 2\), this still gives \(\frac{\infty }{\infty }\) so differentiate a further \(n - 2\) times giving M1
\(\mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{n!}}{{{\lambda ^n}{{\text{e}}^{\lambda x}}}}\) A1
\( = 0\) AG
(ii) first prove the result true for \(n = 0\)
\(\int_0^\infty {{{\text{e}}^{ - \lambda x}}{\text{d}}x = - \frac{1}{\lambda }\left[ {{{\text{e}}^{ - \lambda x}}} \right]_0^\infty = \frac{1}{\lambda }} \) as required M1A1
assume the result is true for \(n = k\) M1
\(\int_0^\infty {{x^k}{{\text{e}}^{ - \lambda x}}{\text{d}}x = \frac{{k!}}{{{\lambda ^{k + 1}}}}} \)
consider, for \(n = k + 1\),
\(\int_0^\infty {{x^{k + 1}}{{\text{e}}^{ - \lambda x}}{\text{d}}x = - \frac{1}{\lambda }\left[ {{x^{k + 1}}{{\text{e}}^{ - \lambda x}}} \right]_0^\infty + \frac{{k + 1}}{\lambda }\int_0^\infty {{x^k}{{\text{e}}^{ - \lambda x}}{\text{d}}x} } \) M1A1
\( = (0 + )\frac{{k + 1}}{\lambda } \times \frac{{k!}}{{{\lambda ^{k + 1}}}}\) A1
\( = \frac{{(k + 1)!}}{{{\lambda ^{k + 2}}}}\) A1
therefore true for \(n = k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 0\), the result is proved by induction R1
Note: Only award the R1 if at least 4 of the previous marks have been awarded.
Note: If a candidate starts at \(n = 1\), do not award the first 2 marks but follow through thereafter.
[13 marks]
(b) (i) \({\text{E}}(X) = \frac{{{\lambda ^{n + 1}}}}{{n!}}\int_0^\infty {{x^{n + 1}}} {{\text{e}}^{ - \lambda x}}{\text{d}}x\) M1
\( = \frac{{{\lambda ^{n + 1}}}}{{n!}} \times \frac{{(n + 1)!}}{{{\lambda ^{n + 2}}}}\) A1
\( = \frac{{(n + 1)}}{\lambda }\) A1
(ii) the mode satisfies \(f'(x) = 0\) M1
\(f'(x) = \frac{{{\lambda ^{n + 1}}}}{{n!}}\left( {n{x^{n - 1}}{{\text{e}}^{ - \lambda x}} - \lambda {x^n}{{\text{e}}^{ - \lambda x}}} \right)\) A1
mode \( = \frac{n}{\lambda }\) A1
[6 marks]
(c) (i) \({\text{P}}(T > t) = {\text{P}}(0,{\text{ }}1{\text{ or 2 arrivals in }}[0,{\text{ }}t])\) (M1)
\( = {{\text{e}}^{ - 8t}} + {{\text{e}}^{ - 8t}} \times 8t + {{\text{e}}^{ - 8t}} \times \frac{{{{(8t)}^2}}}{2}\) A1
\( = {{\text{e}}^{ - 8t}}\left( {1 + 8t + 32{t^2}} \right)\) AG
(ii) differentiating,
\( - f(t) = - 8{{\text{e}}^{ - 8t}}\left( {1 + 8t + 32{t^2}} \right) + {{\text{e}}^{ - 8t}}(8 + 64t)\) A1A1
Note: Award A1 for LHS, A1 for RHS.
\(f(t) = 256{t^2}{{\text{e}}^{ - 8t}}\) A1
(iii) with the previous notation, \(n = 2,{\text{ }}\lambda = 8\). (M1)
mean \( = \frac{3}{8}\) A1
mode \( = \frac{1}{4}\) A1
[8 marks]
Note: Do not follow through if they use a negative probability density function.
[27 marks]