Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2011 Marks available 5 Reference code 11N.1.sl.TZ0.6
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 6 Adapted from N/A

Question

Let sinθ=213 , where π2<θ<π .

Find cosθ .

[3]
a.

Find tan2θ .

[5]
b.

Markscheme

METHOD 1

evidence of choosing sin2θ+cos2θ=1     (M1)

correct working     (A1)

e.g. cos2θ=913 , cosθ=±313 , cosθ=913

cosθ=313    A1     N2

Note: If no working shown, award N1 for 313 .

METHOD 2

approach involving Pythagoras’ theorem     (M1)

e.g. 22+x2=13 ,


finding third side equals 3     (A1)

cosθ=313     A1     N2

Note: If no working shown, award N1 for 313 .

[3 marks]

a.

correct substitution into sin2θ (seen anywhere)     (A1)

e.g. 2(213)(313)

correct substitution into cos2θ (seen anywhere)     (A1)

e.g. (313)2(213)2 , 2(313)21 , 12(213)2

valid attempt to find tan2θ     (M1)

e.g. 2(213)(313)(313)2(213)2 , 2(23)1(23)2

correct working     A1

e.g. (2)(2)(3)13913413 , 12(13)218131 , 1213513

tan2θ=125     A1     N4

Note: If students find answers for cosθ which are not in the range [11], award full FT in (b) for correct FT working shown.

[5 marks]

b.

Examiners report

While the majority of candidates knew to use the Pythagorean identity in part (a), very few remembered that the cosine of an angle in the second quadrant will have a negative value.

a.

In part (b), many candidates incorrectly tried to calculate tan2θ as 2×tanθ , rather than using the double-angle identities.

b.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.3 » Double angle identities for sine and cosine.
Show 23 related questions

View options