Date | None Specimen | Marks available | 3 | Reference code | SPNone.1.sl.TZ0.6 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 6 | Adapted from | N/A |
Question
The expression 6sinxcosx can be expressed in the form asinbx .
Find the value of a and of b .
[3]
a.
Hence or otherwise, solve the equation 6sinxcosx=32 , for π4≤x≤π2 .
[4]
b.
Markscheme
recognizing double angle M1
e.g. 3×2sinxcosx , 3sin2x
a=3 , b=2 A1A1 N3
[3 marks]
a.
substitution 3sin2x=32 M1
sin2x=12 A1
finding the angle A1
e.g. π6 , 2x=5π6
x=5π12 A1 N2
Note: Award A0 if other values are included.
[4 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.