User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.1.sl.TZ2.1
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 1 Adapted from N/A

Question

The following diagram shows a right-angled triangle, \(\rm{ABC}\), where \(\sin \rm{A} = \frac{5}{{13}}\).


Show that \(\cos A = \frac{{12}}{{13}}\).

[2]
a.

Find \(\cos 2A\).

[3]
b.

Markscheme

METHOD 1

approach involving Pythagoras’ theorem     (M1)

eg     \({5^2} + {x^2} = {13^2}\), labelling correct sides on triangle

finding third side is 12 (may be seen on diagram)     A1

\(\cos A = \frac{{12}}{{13}}\)     AG     N0

METHOD 2

approach involving \({\sin ^2}\theta  + {\cos ^2}\theta  = 1\)     (M1)

eg     \({\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\theta  = 1,{\text{ }}{x^2} + \frac{{25}}{{169}} = 1\)

correct working     A1

eg     \({\cos ^2}\theta  = \frac{{144}}{{169}}\)

\(\cos A = \frac{{12}}{{13}}\)     AG     N0

[2 marks]

a.

correct substitution into \(\cos 2\theta \)     (A1)

eg     \(1 - 2{\left( {\frac{5}{{13}}} \right)^2},{\text{ }}2{\left( {\frac{{12}}{{13}}} \right)^2} - 1,{\text{ }}{\left( {\frac{{12}}{{13}}} \right)^2} - {\left( {\frac{5}{{13}}} \right)^2}\)

correct working     (A1)

eg     \(1 - \frac{{50}}{{169}},{\text{ }}\frac{{288}}{{169}} - 1,{\text{ }}\frac{{144}}{{169}} - \frac{{25}}{{169}}\)

\(\cos 2A = \frac{{119}}{{169}}\)     A1     N2

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.3 » Double angle identities for sine and cosine.
Show 23 related questions

View options