Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.1.sl.TZ2.1
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 1 Adapted from N/A

Question

The following diagram shows a right-angled triangle, ABC, where sinA=513.


Show that cosA=1213.

[2]
a.

Find cos2A.

[3]
b.

Markscheme

METHOD 1

approach involving Pythagoras’ theorem     (M1)

eg     52+x2=132, labelling correct sides on triangle

finding third side is 12 (may be seen on diagram)     A1

cosA=1213     AG     N0

METHOD 2

approach involving sin2θ+cos2θ=1     (M1)

eg     (513)2+cos2θ=1, x2+25169=1

correct working     A1

eg     cos2θ=144169

cosA=1213     AG     N0

[2 marks]

a.

correct substitution into cos2θ     (A1)

eg     12(513)2, 2(1213)21, (1213)2(513)2

correct working     (A1)

eg     150169, 2881691, 14416925169

cos2A=119169     A1     N2

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.3 » Double angle identities for sine and cosine.
Show 23 related questions

View options