User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.sl.TZ0.2
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

Let \(\sin \theta  = \frac{{\sqrt 5 }}{3}\), where \(\theta \) is acute.

Find \(\cos \theta \).

[3]
a.

Find \(\cos 2\theta \).

[2]
b.

Markscheme

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)right triangle, \({\cos ^2}\theta  = 1 - {\sin ^2}\theta \)

correct working     (A1)

eg\(\,\,\,\,\,\)missing side is 2, \(\sqrt {1 - {{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}} \)

\(\cos \theta  = \frac{2}{3}\)     A1     N2

[3 marks]

a.

correct substitution into formula for \(\cos 2\theta \)     (A1)

eg\(\,\,\,\,\,\)\(2 \times {\left( {\frac{2}{3}} \right)^2} - 1,{\text{ }}1 - 2{\left( {\frac{{\sqrt 5 }}{3}} \right)^2},{\text{ }}{\left( {\frac{2}{3}} \right)^2} - {\left( {\frac{{\sqrt 5 }}{3}} \right)^2}\)

\(\cos 2\theta  =  - \frac{1}{9}\)    A1     N2

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.3 » The Pythagorean identity \({\cos ^2}\theta + {\sin ^2}\theta = 1\) .

View options