User interface language: English | Español

Date November 2013 Marks available 6 Reference code 13N.1.sl.TZ0.6
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 6 Adapted from N/A

Question

Let \(f(x) = {{\text{e}}^{2x}}\). The line \(L\) is the tangent to the curve of \(f\) at \((1,{\text{ }}{{\text{e}}^2})\).

Find the equation of \(L\) in the form \(y = ax + b\).

Markscheme

recognising need to differentiate (seen anywhere)     R1

eg     \(f',{\text{ }}2{{\text{e}}^{2x}}\)

attempt to find the gradient when \(x = 1\)     (M1)

eg     \(f'(1)\)

\(f'(1) = 2{{\text{e}}^2}\)     (A1)

attempt to substitute coordinates (in any order) into equation of a straight line     (M1)

eg     \(y - {{\text{e}}^2} = 2{{\text{e}}^2}(x - 1),{\text{ }}{{\text{e}}^2} = 2{{\text{e}}^2}(1) + b\)

correct working     (A1) 

eg     \(y - {{\text{e}}^2} = 2{{\text{e}}^2}x - 2{{\text{e}}^2},{\text{ }}b =  - {{\text{e}}^2}\)

\(y = 2{{\text{e}}^2}x - {{\text{e}}^2}\)     A1     N3

[6 marks] 

Examiners report

[N/A]

Syllabus sections

Topic 6 - Calculus » 6.1 » Tangents and normals, and their equations.
Show 42 related questions

View options