Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2021 Marks available 4 Reference code 21N.1.AHL.TZ0.11
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Hence or otherwise and Determine Question number 11 Adapted from N/A

Question

Prove by mathematical induction that dndxn(x2ex)=[x2+2nx+n(n-1)]ex for n+.

[7]
a.

Hence or otherwise, determine the Maclaurin series of f(x)=x2ex in ascending powers of x, up to and including the term in x4.

[3]
b.

Hence or otherwise, determine the value of limx0[(x2ex-x2)3x9].

[4]
c.

Markscheme

For n=1

LHS: ddx(x2ex)=x2ex+2xex(=ex(x2+2x))              A1

RHS: (x2+2(1)x+1(1-1))ex(=ex(x2+2x))              A1

so true for n=1

now assume true for n=k; i.e. dkdxk(x2ex)=[x2+2kx+k(k-1)]ex                             M1


Note:
Do not award M1 for statements such as "let n=k". Subsequent marks can still be awarded.


attempt to differentiate the RHS                             M1

dk+1dxk+1(x2ex)=ddx([x2+2kx+k(k-1)]ex)

=(2x+2k)ex+(x2+2kx+k(k-1))ex              A1

=[x2+2(k+1)x+k(k+1)]ex              A1

so true for n=k implies true for n=k+1

therefore n=1 true and n=k true n=k+1 true

therefore, true for all n+                    R1


Note:
Award R1 only if three of the previous four marks have been awarded

 

[7 marks]

a.

METHOD 1

attempt to use dndxn(x2ex)=[x2+2nx+n(n-1)]ex             (M1)


Note: For x=0dndxn(x2ex)x=0=n(n-1) may be seen.


f(0)=0, 

use of fx=f0+xf'0+x22!f''0+x33!f'''0+x44!f40+              (M1)

fxx2+x3+12x4              A1

 

METHOD 2

'x2× Maclaurin series of ex'             (M1)

x21+x+x22!+             (A1)

fxx2+x3+12x4              A1

 

[3 marks]

b.

METHOD 1

attempt to substitute x2exx2+x3+12x4 into x2ex-x23x9              M1

x2ex-x23x9x2+x3+12x4+-x23x9             (A1)


EITHER

=x3+12x4+3x9                   A1

=x9+higher order termsx9


OR

x3+12x4+x33                   A1

1+12x+3


THEN

=1 + higher order terms

so limx0x2ex-x23x9=1                   A1

 

METHOD 2

limx0x2ex-x23x9=limx0x2ex-x2x33                  M1

=limx0ex-1x3                  (A1)

attempt to use L'Hôpital's rule                  M1

=limx0ex-013

=limx0ex3

=1                  A1

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 —Calculus » AHL 5.13—Limits and L’Hopitals
Show 27 related questions
Topic 1—Number and algebra » AHL 1.15—Proof by induction, contradiction, counterexamples
Topic 5 —Calculus » AHL 5.19—Maclaurin series
Topic 1—Number and algebra
Topic 5 —Calculus

View options