Processing math: 100%

User interface language: English | Español

Date November 2018 Marks available 3 Reference code 18N.3.AHL.TZ0.Hca_2
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Find and Hence Question number Hca_2 Adapted from N/A

Question

Use L’Hôpital’s rule to determine the value of

limx0(e3x2+3cos(2x)43x2)

[5]
a.

Hence find limx0(x0(e3t2+3cos(2t)4)dtx03t2dt).

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

limx0e3x2+3cos2x43x2=(00)

=limx06xe3x26sin2x6x=(00)       M1A1A1

=limx06e3x2+36x2e3x212cos2x6      A1

= −3       A1

 

[5 marks]

a.

limx0(x0(e3t2+3cos2t4)dtx03t2dt) is of the form 00

applying l’Hôpital´s rule        (M1)

limx0e3x2+3cos2x43x2       (A1)

= −3        A1 

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.13—Limits and L’Hopitals
Show 27 related questions
Topic 5 —Calculus

View options