User interface language: English | Español

Date November 2018 Marks available 3 Reference code 18N.3.AHL.TZ0.Hca_2
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Find and Hence Question number Hca_2 Adapted from N/A

Question

Use L’Hôpital’s rule to determine the value of

lim x 0 ( e 3 x 2 + 3 cos ( 2 x ) 4 3 x 2 )

[5]
a.

Hence find lim x 0 ( 0 x ( e 3 t 2 + 3 cos ( 2 t ) 4 ) d t 0 x 3 t 2 d t ) .

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

lim x 0 e 3 x 2 + 3 cos 2 x 4 3 x 2 = ( 0 0 )

= lim x 0 6 x e 3 x 2 6 sin 2 x 6 x = ( 0 0 )        M1A1A1

= lim x 0 6 e 3 x 2 + 36 x 2 e 3 x 2 12 cos 2 x 6       A1

= −3       A1

 

[5 marks]

a.

lim x 0 ( 0 x ( e 3 t 2 + 3 cos 2 t 4 ) d t 0 x 3 t 2 d t )  is of the form  0 0

applying l’Hôpital´s rule        (M1)

lim x 0 e 3 x 2 + 3 cos 2 x 4 3 x 2        (A1)

= −3        A1 

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.13—Limits and L’Hopitals
Show 27 related questions
Topic 5 —Calculus

View options