User interface language: English | Español

Date May 2021 Marks available 1 Reference code 21M.3.AHL.TZ1.2
Level Additional Higher Level Paper Paper 3 Time zone Time zone 1
Command term Interpret Question number 2 Adapted from N/A

Question

This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a 3 by 6 rectangle has an area of 18 and a perimeter of 18.

 

For each polygon in this question, let the numerical value of its area be A and let the numerical value of its perimeter be P.

An n-sided regular polygon can be divided into n congruent isosceles triangles. Let x be the length of each of the two equal sides of one such isosceles triangle and let y be the length of the third side. The included angle between the two equal sides has magnitude 2πn.

Part of such an n-sided regular polygon is shown in the following diagram.

Consider a n-sided regular polygon such that A=P.

The Maclaurin series for tanx is x+x33+2x515+

Consider a right-angled triangle with side lengths a, b and a2+b2, where ab, such that A=P.

Find the side length, s, where s>0, of a square such that A=P.

[3]
a.

Write down, in terms of x and n, an expression for the area, AT, of one of these isosceles triangles.

[1]
b.

Show that y=2xsinπn.

[2]
c.

Use the results from parts (b) and (c) to show that A=P=4ntanπn.

[7]
d.

Use the Maclaurin series for tanx to find limn4ntanπn.

[3]
e.i.

Interpret your answer to part (e)(i) geometrically.

[1]
e.ii.

Show that a=8b-4+4.

[7]
f.

By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which a, b, A, P.

[3]
g.i.

Determine the area and perimeter of these two right-angled triangles.

[1]
g.ii.

Markscheme

A=s2 and P=4s              (A1)

A=Ps2=4s              (M1)

ss-4=0

s=4s>0        A1

 

Note: Award A1M1A0 if both s=4 and s=0 are stated as final answers.

 

[3 marks]

a.

AT=12x2sin2πn        A1

 

Note: Award A1 for a correct alternative form expressed in terms of x and n only.

          For example, using Pythagoras’ theorem, AT=xsinπnx2-x2sin2πn  or  AT=212xsinπnxcosπn  or  AT=x2sinπncosπn.

 

[1 mark]

b.

METHOD 1

uses sinθ=opphyp         (M1)

y2x=sinπn        A1

y=2xsinπn       AG

 

METHOD 2

uses Pythagoras’ theorem y22+h2=x2  and  h=xcosπn         (M1)

y22+xcosπn2=x2  y2=4x21-cos2πn

=4x2sin2πn        A1

y=2xsinπn       AG

 

METHOD 3

uses the cosine rule         (M1)

y2=2x2-2x2cos2πn =2x21-cos2πn

=4x2sin2πn        A1

y=2xsinπn       AG

 

METHOD 4

uses the sine rule         (M1)

ysin2πn=xsinπ2-πn

ycosπn=2xsinπncosπn        A1

y=2xsinπn       AG

 

[2 marks]

c.

A=PnAT=ny         (M1)

 

Note: Award M1 for equating correct expressions for A and P.

 

12nx2sin2πn=2nxsinπn nx2sinπncosπn=2nxsinπn

12x2sin2πn=2xsinπn x2sinπncosπn=2xsinπn        A1

uses sin2πn=2sinπncosπn (seen anywhere in part (d) or in part (b))         (M1)

x2sinπncosπn=2xsinπn

attempts to either factorise or divide their expression         (M1)

xsinπnxcosπn-2=0

x=2cosπn, xsinπn0 (or equivalent)        A1

 

EITHER

substitutes x=2cosπn (or equivalent) into P=ny         (M1)

P=2n2cosπnsinπn        A1


Note:
Other approaches are possible. For example, award A1 for P=2nxcosπntanπn and M1 for substituting x=2cosπn into P.


OR

substitutes x=2cosπn (or equivalent) into A=nAT          (M1)

A=12n2cosπn2sin2πn

A=12n2cosπn22sinπncosπn        A1

 

THEN

A=P=4ntanπn       AG

 

[7 marks]

d.

attempts to use the Maclaurin series for tanx with x=πn         (M1)

tanπn=πn+πn33+2πn515+

4ntanπn=4nπn+π33n3+2π515n5+ (or equivalent)        A1

=4π+π33n2+2π515n4+

limn4ntanπn=4π        A1

 

Note: Award a maximum of M1A1A0 if limn is not stated anywhere.

 

[3 marks]

e.i.

(as n, P4π and A4π)

the polygon becomes a circle of radius 2                   R1

 

Note: Award R1 for alternative responses such as:
the polygon becomes a circle of area 4π OR
the polygon becomes a circle of perimeter 4π OR
the polygon becomes a circle with A=P=4π.
Award R0 for polygon becomes a circle.

 

[1 mark]

e.ii.

A=12ab and P=a+b+a2+b2                   (A1)(A1)

equates their expressions for A and P                 M1

A=Pa+b+a2+b2=12ab

a2+b2=12ab-a+b                M1

 

Note: Award M1 for isolating a2+b2 or ±2a2+b2. This step may be seen later.

 

a2+b2=12ab-a+b2

a2+b2=14a2b2-212aba+b+a+b2                M1

=14a2b2-a2b-ab2+a2+2ab+b2

 

Note: Award M1 for attempting to expand their RHS of either a2+b2= or 4a2+b2=.

 

EITHER

ab14ab-a-b+2=0  ab0               A1

14ab-a-b+2=0

ab-4a=4b-8

 

OR

14a2b2-a2b-ab2+2ab=0

a14b2-b+2b-b2=0  ab2-4b+8b-4b2=0               A1

a=4b2-8bb2-4b

 

THEN

a=4b-8b-4               A1

a=4b-16+8b-4

a=8b-4+4               AG

 

Note: Award a maximum of A1A1M1M1M0A0A0 for attempting to verify.
For example, verifying that A=P=16b-4+2b+4 gains 4 of the 7 marks.

 

[7 marks]

f.

using an appropriate method          (M1)

eg substituting values for b or using divisibility properties

5,12,13 and 6,8,10             A1A1

 

Note: Award A1A0 for either one set of three correct side lengths or two sets of two correct side lengths.

 

[3 marks]

g.i.

A=P=30  and  A=P=24            A1

 

Note: Do not award A1FT.

 

[1 mark]

g.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.
[N/A]
f.
[N/A]
g.i.
[N/A]
g.ii.

Syllabus sections

Topic 5 —Calculus » AHL 5.13—Limits and L’Hopitals
Show 27 related questions
Topic 5 —Calculus

View options