User interface language: English | Español

Date May 2019 Marks available 9 Reference code 19M.3.AHL.TZ0.Hca_4
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Find Question number Hca_4 Adapted from N/A

Question

Using L’Hôpital’s rule, find lim x 0 ( tan 3 x 3 tan x sin 3 x 3 sin x ) .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

lim x 0 ( tan 3 x 3 tan x sin 3 x 3 sin x )

lim x 0 ( 3 se c 2 3 x 3 se c 2 x 3 cos 3 x 3 cos x ) ( = lim x 0 ( se c 2 3 x se c 2 x cos 3 x cos x ) )       M1A1A1

Note: Award M1 for attempt at differentiation using l'Hopital's rule, A1 for numerator, A1 for denominator.

 

METHOD 1

using l’Hopital’s rule again

= lim x 0 ( 18 se c 2 3 x tan 3 x 6 se c 2 x tan x 9 sin 3 x + 3 sin x ) ( = lim x 0 ( 6 se c 2 3 x tan 3 x 2 se c 2 x tan x 3 sin 3 x + sin x ) )       A1A1

EITHER

= lim x 0 ( 108 se c 2 3 x ta n 2 3 x + 54 se c 4 3 x 12 se c 2 x ta n 2 x 6 se c 4 x  - 27 cos 3 x + 3 cos x )       A1A1

Note: Not all terms in numerator need to be written in final fraction. Award A1 for  54 se c 4 3 x + 6 se c 4 x . However, if the terms are written, they
must be correct to award A1.

attempt to substitute x = 0          M1

= 48 24

OR

d d x ( 18 se c 2 3 x tan 3 x 6 se c 2 x tan x ) | x = 0 = 48       (M1)A1

d d x ( 9 sin 3 x + 3 sin x ) | x = 0 = 24       A1

THEN

( lim x 0 ( tan 3 x 3 tan x sin 3 x 3 sin x ) ) = 2       A1

 

METHOD 2

= lim x 0 ( 3 co s 2 3 x 3 co s 2 x 3 cos 3 x 3 cos x )       M1

= lim x 0 ( co s 2 x co s 2 3 x co s 2 3 x co s 2 x ( cos 3 x cos x ) )       A1

= lim x 0 ( cos x + cos 3 x co s 2 3 x co s 2 x )       M1A1

attempt to substitute x = 0          M1

= 2 1

= 2       A1

 

[9 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » AHL 5.13—Limits and L’Hopitals
Show 27 related questions
Topic 5 —Calculus

View options