Date | November 2018 | Marks available | 5 | Reference code | 18N.3.AHL.TZ0.Hca_2 |
Level | Additional Higher Level | Paper | Paper 3 | Time zone | Time zone 0 |
Command term | Determine | Question number | Hca_2 | Adapted from | N/A |
Question
Use L’Hôpital’s rule to determine the value of
limx→0(e−3x2+3cos(2x)−43x2)
[5]
a.
Hence find limx→0(∫x0(e−3t2+3cos(2t)−4)dt∫x03t2dt).
[3]
b.
Markscheme
* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
limx→0e−3x2+3cos2x−43x2=(00)
=limx→0−6xe−3x2−6sin2x6x=(00) M1A1A1
=limx→0−6e−3x2+36x2e−3x2−12cos2x6 A1
= −3 A1
[5 marks]
a.
limx→0(∫x0(e−3t2+3cos2t−4)dt∫x03t2dt) is of the form 00
applying l’Hôpital´s rule (M1)
limx→0e−3x2+3cos2x−43x2 (A1)
= −3 A1
[3 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.