User interface language: English | Español

Date May Specimen paper Marks available 2 Reference code SPM.3.AHL.TZ0.1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Determine Question number 1 Adapted from N/A

Question

This question asks you to investigate regular nn-sided polygons inscribed and circumscribed in a circle, and the perimeter of these as nn tends to infinity, to make an approximation for ππ.

Let Pi(n)Pi(n) represent the perimeter of any nn-sided regular polygon inscribed in a circle of radius 1 unit.

Consider an equilateral triangle ABC of side length, xx units, circumscribed about a circle of radius 1 unit and centre O as shown in the following diagram.

Let Pc(n)Pc(n) represent the perimeter of any nn-sided regular polygon circumscribed about a circle of radius 1 unit.

Consider an equilateral triangle ABC of side length, xx units, inscribed in a circle of radius 1 unit and centre O as shown in the following diagram.

The equilateral triangle ABC can be divided into three smaller isosceles triangles, each subtending an angle of 2π32π3 at O, as shown in the following diagram.

Using right-angled trigonometry or otherwise, show that the perimeter of the equilateral triangle ABC is equal to 3333 units.

[3]
a.

Consider a square of side length, xx units, inscribed in a circle of radius 1 unit. By dividing the inscribed square into four isosceles triangles, find the exact perimeter of the inscribed square.

 

[3]
b.

Find the perimeter of a regular hexagon, of side length, xx units, inscribed in a circle of radius 1 unit.

 

[2]
c.

Show that Pi(n)=2nsin(πn)Pi(n)=2nsin(πn).

[3]
d.

Use an appropriate Maclaurin series expansion to find limnPi(n)limnPi(n) and interpret this result geometrically.

[5]
e.

Show that Pc(n)=2ntan(πn)Pc(n)=2ntan(πn).

[4]
f.

By writing Pc(n)Pc(n) in the form 2tan(πn)1n2tan(πn)1n, find limnPc(n)limnPc(n).

[5]
g.

Use the results from part (d) and part (f) to determine an inequality for the value of ππ in terms of nn.

[2]
h.

The inequality found in part (h) can be used to determine lower and upper bound approximations for the value of ππ.

Determine the least value for nn such that the lower bound and upper bound approximations are both within 0.005 of ππ.

[3]
i.

Markscheme

METHOD 1

consider right-angled triangle OCX where CX =x2=x2

sinπ3=x21sinπ3=x21       M1A1

x2=32x=3x2=32x=3      A1

Pi=3×x=33Pi=3×x=33      AG

 

METHOD 2

eg  use of the cosine rule x2=12+122(1)(1)cos2π3x2=12+122(1)(1)cos2π3          M1A1    

x=3x=3      A1

Pi=3×x=33Pi=3×x=33      AG

Note: Accept use of sine rule.

 

[3 marks]

a.

sinπ4=1xsinπ4=1x where xx = side of square      M1

x=2x=2       A1

Pi=42Pi=42       A1

[3 marks]

b.

6 equilateral triangles ⇒xx = 1       A1

Pi=6Pi=6      A1

[2 marks]

c.

in right-angled triangle sin(πn)=x21sin(πn)=x21     M1

x=2sin(πn)x=2sin(πn)     A1

Pi=n×xPi=n×x

Pi=n×2sin(πn)Pi=n×2sin(πn)     M1

Pi=2nsin(πn)Pi=2nsin(πn)     AG

[3 marks]

d.

consider limn2nsin(πn)limn2nsin(πn)

use of sinx=xx33!+x55!sinx=xx33!+x55!      M1

2nsin(πn)=2n(πnπ36n3+π5120n5)2nsin(πn)=2n(πnπ36n3+π5120n5)      (A1)

=2(ππ36n2+π5120n4)=2(ππ36n2+π5120n4)      A1

limn2nsin(πn)=2πlimn2nsin(πn)=2π     A1

as nn polygon becomes a circle of radius 1 and Pi=2πPi=2π     R1

[5 marks]

e.

consider an nn-sided polygon of side length xx

2nn right-angled triangles with angle 2π2n=πn2π2n=πn at centre       M1A1

opposite side x2=tan(πn)x=2tan(πn)x2=tan(πn)x=2tan(πn)       M1A1

Perimeter Pc=2ntan(πn)Pc=2ntan(πn)       AG

[4 marks]

f.

consider limn2ntan(πn)=limn(2tan(πn)1n)limn2ntan(πn)=limn(2tan(πn)1n)

=limn(2tan(πn)1n)=00=limn(2tan(πn)1n)=00         R1

attempt to use L’Hopital’s rule        M1

=limn(2πn2sec2(πn)1n2)=limn(2πn2sec2(πn)1n2)       A1A1

=2π=2π       A1

[5 marks]

g.

Pi<2π<PcPi<2π<Pc

2nsin(πn)<2π<2ntan(πn)2nsin(πn)<2π<2ntan(πn)       M1

nsin(πn)<π<ntan(πn)nsin(πn)<π<ntan(πn)       A1

[2 marks]

h.

attempt to find the lower bound and upper bound approximations within 0.005 of ππ     (M1)

nn = 46        A2

[3 marks]

i.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.
[N/A]
i.

Syllabus sections

Topic 5 —Calculus » AHL 5.13—Limits and L’Hopitals
Show 27 related questions
Topic 5 —Calculus » AHL 5.19—Maclaurin series
Topic 5 —Calculus

View options