User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.2.AHL.TZ2.11
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number 11 Adapted from N/A

Question

A function f is defined by fx=kex21+ex, where x, x0 and k+.

The region enclosed by the graph of y=f(x), the x-axis, the y-axis and the line x=ln16 is rotated 360° about the x-axis to form a solid of revolution.

Pedro wants to make a small bowl with a volume of 300cm3 based on the result from part (a). Pedro’s design is shown in the following diagrams.

The vertical height of the bowl, BO, is measured along the x-axis. The radius of the bowl’s top is OA and the radius of the bowl’s base is BC. All lengths are measured in cm.

For design purposes, Pedro investigates how the cross-sectional radius of the bowl changes.

Show that the volume of the solid formed is 15k2π34 cubic units.

[6]
a.

Find the value of k that satisfies the requirements of Pedro’s design.

[2]
b.

Find OA.

[2]
c.i.

Find BC.

[2]
c.ii.

By sketching the graph of a suitable derivative of f, find where the cross-sectional radius of the bowl is decreasing most rapidly.

[4]
d.i.

State the cross-sectional radius of the bowl at this point.

[2]
d.ii.

Markscheme

attempt to use V=πabfx2dx                 (M1)

V=π0ln16kex21+ex2dx  V=k2π0ln16ex1+ex2dx


EITHER

applying integration by recognition                 (M1)

=k2π-11+ex0ln16           A3


OR

u=1+exdu=exdx            (A1)

attempt to express the integral in terms of u             (M1)

when x=0, u=2 and when x=ln16, u=17

V=k2π2171u2du            (A1)

=k2π-1u217             A1

 

OR

u=exdu=exdx            (A1)

attempt to express the integral in terms of u             (M1)

when x=0, u=1 and when x=ln16, u=16

V=k2π11611+u2du             (A1)

=k2π-11+u116           A1


Note: Accept equivalent working with indefinite integrals and original limits for x.

 

THEN

=k2π12-117           A1

so the volume of the solid formed is 15k2π34 cubic units           AG


Note:
Award (M1)(A0)(M0)(A0)(A0)(A1) when 1534 is obtained from GDC

 

[6 marks]

a.

a valid algebraic or graphical attempt to find k              (M1)

k2=300×3415π

k=14.7  =2170π=680π  (as k+)           A1


Note: Candidates may use their GDC numerical solve feature.

 

[2 marks]

b.

attempting to find OA=f0=k2

with k=14.712 =2170π=680π             (M1)

OA=7.36 =170π           A1

 

[2 marks]

c.i.

attempting to find BC=fln16=4k17

with k=14.712 =2170π=680π             (M1)

BC=3.46 =817170π=81017π           A1

 

[2 marks]

c.ii.

EITHER

recognising to graph y=f'x             (M1)

Note: Award M1 for attempting to use quotient rule or product rule differentiation. f'x=kex21-ex21+ex2


for x>0 graph decreasing to the local minimum           A1

before increasing towards the x-axis           A1

 

OR

recognising to graph y=f''x             (M1)

Note: Award M1 for attempting to use quotient rule or product rule differentiation. f''x=kex2e2x-6ex+141+ex3

for x>0, graph increasing towards and beyond the x-intercept          A1

recognising f''x=0 for maximum rate          (A1)

 

THEN

x=1.76  =ln22+3         A1

 

Note: Only award A marks if either graph is seen.

[4 marks]

d.i.

attempting to find f1.76             (M1)

the cross-sectional radius at this point is 5.20 85πcm            A1

 

[2 marks]

d.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 5 —Calculus » SL 5.10—Indefinite integration, reverse chain, by substitution
Show 54 related questions
Topic 5 —Calculus » AHL 5.17—Areas under curve onto y-axis, volume of revolution (about x and y axes)
Topic 5 —Calculus

View options