Processing math: 100%

User interface language: English | Español

Date November 2019 Marks available 6 Reference code 19N.1.AHL.TZ0.H_2
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number H_2 Adapted from N/A

Question

Given that lnk0e2xdx=12, find the value of k.

Markscheme

12e2x seen       (A1)

attempt at using limits in an integrated expression ([12e2x]lnk0=12e2lnk12e0)        (M1)

=12elnk212e0       (A1)

Setting their equation =12       M1

Note: their equation must be an integrated expression with limits substituted.

12k212=12       A1

(k2=25)k=5       A1

Note: Do not award final A1 for k=±5.

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » SL 5.10—Indefinite integration, reverse chain, by substitution
Show 54 related questions
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 5 —Calculus

View options