User interface language: English | Español

Date November 2018 Marks available 8 Reference code 18N.1.SL.TZ0.S_6
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_6 Adapted from N/A

Question

Let  f ( x ) = 6 2 x 16 + 6 x x 2 . The following diagram shows part of the graph of f .

The region R is enclosed by the graph of f , the x -axis, and the y -axis. Find the area of R.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1 (limits in terms of x )

valid approach to find x -intercept      (M1)

eg    f ( x ) = 0 ,   6 2 x 16 + 6 x x 2 = 0 ,   6 2 x = 0

x -intercept is 3      (A1)

valid approach using substitution or inspection      (M1)

eg    u = 16 + 6 x x 2 ,   0 3 6 2 x u d x ,   d u = 6 2 x 1 u ,   2 u 1 2 ,

u = 16 + 6 x x 2 ,    d u d x = ( 6 2 x ) 1 2 ( 16 + 6 x x 2 ) 1 2 ,   2 d u ,   2 u

f ( x ) d x = 2 16 + 6 x x 2       (A2)

substituting both of their limits into their integrated function and subtracting      (M1)

eg   2 16 + 6 ( 3 ) 3 2 2 16 + 6 ( 0 ) 2 0 2 ,   2 16 + 18 9 2 16

Note: Award M0 if they substitute into original or differentiated function. Do not accept only “– 0” as evidence of substituting lower limit.

 

correct working      (A1)

eg    2 25 2 16 ,   10 8

area = 2      A1 N2

 

 

METHOD 2 (limits in terms of u )

valid approach to find x -intercept      (M1)

eg    f ( x ) = 0 ,   6 2 x 16 + 6 x x 2 = 0 ,   6 2 x = 0

x -intercept is 3      (A1)

valid approach using substitution or inspection      (M1)

eg    u = 16 + 6 x x 2 ,   0 3 6 2 x u d x ,   d u = 6 2 x 1 u

u = 16 + 6 x x 2 ,    d u d x = ( 6 2 x ) 1 2 ( 16 + 6 x x 2 ) 1 2 ,   2 d u

correct integration      (A2)

eg    1 u d u = 2 u 1 2 ,    2 d u = 2 u

both correct limits for u       (A1)

eg    u = 16 and  u = 25,   16 25 1 u d u ,    [ 2 u 1 2 ] 16 25 ,    u = 4 and  u = 5,   4 5 2 d u ,    [ 2 u ] 4 5

substituting both of their limits for u (do not accept 0 and 3) into their integrated function and subtracting     (M1)

eg    2 25 2 16 ,   10 8

Note: Award M0 if they substitute into original or differentiated function, or if they have not attempted to find limits for u .

 

area = 2      A1 N2

 

[8 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » SL 5.10—Indefinite integration, reverse chain, by substitution
Show 54 related questions
Topic 5 —Calculus

View options