User interface language: English | Español

Date November 2019 Marks available 1 Reference code 19N.1.AHL.TZ0.H_11
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Comment Question number H_11 Adapted from N/A

Question

Points AA(0 , 0 , 10) , BB(0 , 10 , 0) , CC(10 , 0 , 0) , VV(pp , pp , pp) form the vertices of a tetrahedron.

Consider the case where the faces ABVABV and ACVACV are perpendicular.

The following diagram shows the graph of θθ against pp. The maximum point is shown by XX.

Show that AB×AV=10(102ppp)AB×AV=10102ppp and find a similar expression for AC×AVAC×AV.

[3]
a.i.

Hence, show that, if the angle between the faces ABVABV and ACVACV is θθ, then cosθ=p(3p20)6p240p+100cosθ=p(3p20)6p240p+100.

[5]
a.ii.

Find the two possible coordinates of VV.

[3]
b.i.

Comment on the positions of VV in relation to the plane ABCABC.

[1]
b.ii.

At XX, find the value of pp and the value of θθ.

[3]
c.i.

Find the equation of the horizontal asymptote of the graph.

[2]
c.ii.

Markscheme

AV=(ppp10)AV=ppp10      A1

AB×AV=(01010)×(ppp10)=(10(p10)+10p10p10p)AB×AV=01010×ppp10=10(p10)+10p10p10p      A1

=(20p10010p10p)=10(102ppp)=20p10010p10p=10102ppp      AG

AC×AV=(10010)×(ppp10)=(10p10020p10p)(=10(p102pp))AC×AV=10010×ppp10=10p10020p10p=10p102pp      A1

 

[3 marks]

a.i.

attempt to find a scalar product        M1

10(102ppp)10(p102pp)=100(3p220p)10102ppp10p102pp=100(3p220p)

OR  (102ppp)(p102pp)=3p220p102pppp102pp=3p220p      A1

attempt to find magnitude of either AB×AVAB×AV  or  AC×AVAC×AV        M1

|10(102ppp)|=|10(p102pp)|=10(102p)2+2p2∣ ∣10102ppp∣ ∣=∣ ∣10p102pp∣ ∣=10(102p)2+2p2        A1

100(3p220p)=100((102p)2+2p2)2cosθ100(3p220p)=100((102p)2+2p2)2cosθ

cosθ=3p220p(102p)2+2p2cosθ=3p220p(102p)2+2p2        A1

Note: Award A1 for any intermediate step leading to the correct answer.

=p(3p20)6p240p+100=p(3p20)6p240p+100      AG

Note: Do not allow FT marks from part (a)(i).

[8 marks]

a.ii.

p(3p20)=0p=0p(3p20)=0p=0  or  p=203p=203        M1A1

coordinates are (0, 0, 0) and (203203203)(203203203)      A1

Note: Do not allow column vectors for the final A mark.

[3 marks]

b.i.

two points are mirror images in the plane
or opposite sides of the plane
or equidistant from the plane
or the line connecting the two Vs is perpendicular to the plane       R1

[1 mark]

b.ii.

geometrical consideration or attempt to solve 1=p(3p20)6p240p+1001=p(3p20)6p240p+100       (M1)

p=103θ=πp=103θ=π  or  θ=180θ=180       A1A1

[3 marks]

c.i.

pcosθ12pcosθ12         M1

hence the asymptote has equation θ=π3θ=π3        A1

[2 marks]

c.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Show 55 related questions
Topic 3— Geometry and trigonometry

View options