Date | November 2019 | Marks available | 1 | Reference code | 19N.1.AHL.TZ0.H_11 |
Level | Additional Higher Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 0 |
Command term | Comment | Question number | H_11 | Adapted from | N/A |
Question
Points AA(0 , 0 , 10) , BB(0 , 10 , 0) , CC(10 , 0 , 0) , VV(pp , pp , pp) form the vertices of a tetrahedron.
Consider the case where the faces ABVABV and ACVACV are perpendicular.
The following diagram shows the graph of θθ against pp. The maximum point is shown by XX.
Show that →AB×→AV=−10(10−2ppp)−−→AB×−−→AV=−10⎛⎜⎝10−2ppp⎞⎟⎠ and find a similar expression for →AC×→AV−−→AC×−−→AV.
Hence, show that, if the angle between the faces ABVABV and ACVACV is θθ, then cosθ=p(3p−20)6p2−40p+100cosθ=p(3p−20)6p2−40p+100.
Find the two possible coordinates of VV.
Comment on the positions of VV in relation to the plane ABCABC.
At XX, find the value of pp and the value of θθ.
Find the equation of the horizontal asymptote of the graph.
Markscheme
→AV=(ppp−10)−−→AV=⎛⎜⎝ppp−10⎞⎟⎠ A1
→AB×→AV=(010−10)×(ppp−10)=(10(p−10)+10p−10p−10p)−−→AB×−−→AV=⎛⎜⎝010−10⎞⎟⎠×⎛⎜⎝ppp−10⎞⎟⎠=⎛⎜⎝10(p−10)+10p−10p−10p⎞⎟⎠ A1
=(20p−100−10p−10p)=−10(10−2ppp)=⎛⎜⎝20p−100−10p−10p⎞⎟⎠=−10⎛⎜⎝10−2ppp⎞⎟⎠ AG
→AC×→AV=(100−10)×(ppp−10)=(10p100−20p10p)(=10(p10−2pp))−−→AC×−−→AV=⎛⎜⎝100−10⎞⎟⎠×⎛⎜⎝ppp−10⎞⎟⎠=⎛⎜⎝10p100−20p10p⎞⎟⎠⎛⎜⎝=10⎛⎜⎝p10−2pp⎞⎟⎠⎞⎟⎠ A1
[3 marks]
attempt to find a scalar product M1
−10(10−2ppp)∙10(p10−2pp)=100(3p2−20p)−10⎛⎜⎝10−2ppp⎞⎟⎠∙10⎛⎜⎝p10−2pp⎞⎟⎠=100(3p2−20p)
OR −(10−2ppp)∙(p10−2pp)=3p2−20p−⎛⎜⎝10−2ppp⎞⎟⎠∙⎛⎜⎝p10−2pp⎞⎟⎠=3p2−20p A1
attempt to find magnitude of either →AB×→AV−−→AB×−−→AV or →AC×→AV−−→AC×−−→AV M1
|−10(10−2ppp)|=|10(p10−2pp)|=10√(10−2p)2+2p2∣∣ ∣∣−10⎛⎜⎝10−2ppp⎞⎟⎠∣∣ ∣∣=∣∣ ∣∣10⎛⎜⎝p10−2pp⎞⎟⎠∣∣ ∣∣=10√(10−2p)2+2p2 A1
100(3p2−20p)=100(√(10−2p)2+2p2)2cosθ100(3p2−20p)=100(√(10−2p)2+2p2)2cosθ
cosθ=3p2−20p(10−2p)2+2p2cosθ=3p2−20p(10−2p)2+2p2 A1
Note: Award A1 for any intermediate step leading to the correct answer.
=p(3p−20)6p2−40p+100=p(3p−20)6p2−40p+100 AG
Note: Do not allow FT marks from part (a)(i).
[8 marks]
p(3p−20)=0⇒p=0p(3p−20)=0⇒p=0 or p=203p=203 M1A1
coordinates are (0, 0, 0) and (203, 203, 203)(203, 203, 203) A1
Note: Do not allow column vectors for the final A mark.
[3 marks]
two points are mirror images in the plane
or opposite sides of the plane
or equidistant from the plane
or the line connecting the two Vs is perpendicular to the plane R1
[1 mark]
geometrical consideration or attempt to solve −1=p(3p−20)6p2−40p+100−1=p(3p−20)6p2−40p+100 (M1)
p=103, θ=πp=103, θ=π or θ=180∘θ=180∘ A1A1
[3 marks]
p→∞⇒cosθ→12p→∞⇒cosθ→12 M1
hence the asymptote has equation θ=π3θ=π3 A1
[2 marks]