User interface language: English | Español

Date November 2016 Marks available 5 Reference code 16N.2.AHL.TZ0.H_2
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number H_2 Adapted from N/A

Question

Find the acute angle between the planes with equations x+y+z=3x+y+z=3 and 2xz=22xz=2.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

n1=(111)1=111 and n2=(201)2=201     (A1)(A1)

EITHER

θ=arccos(n1n2|n1||n2|)(cosθ=n1n2|n1||n2|)θ=arccos(n1n2|n1||n2|)(cosθ=n1n2|n1||n2|)    (M1)

=arccos(2+0135)(cosθ=2+0135)=arccos(2+0135)(cosθ=2+0135)    (A1)

=arccos(115)(cosθ=115)=arccos(115)(cosθ=115)

OR

θ=arcsin(|n1×n2||n1||n2|)(sinθ=|n1×n2||n1||n2|)θ=arcsin(|n1×n2||n1||n2|)(sinθ=|n1×n2||n1||n2|)    (M1)

=arcsin(1435)(sinθ=1435)=arcsin(1435)(sinθ=1435)    (A1)

=arcsin(1415)(sinθ=1415)=arcsin(1415)(sinθ=1415)

 

THEN

=75.0 (or 1.31)=75.0 (or 1.31)    A1

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Show 55 related questions
Topic 3— Geometry and trigonometry

View options