User interface language: English | Español

Date May 2019 Marks available 1 Reference code 19M.2.AHL.TZ2.H_11
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Show that Question number H_11 Adapted from N/A

Question

The plane П1 contains the points P(1, 6, −7) , Q(0, 1, 1) and R(2, 0, −4).

The Cartesian equation of the plane П2 is given by x3yz=3x3yz=3.

The Cartesian equation of the plane П3 is given by ax+by+cz=1ax+by+cz=1.

Consider the case that П3 contains LL.

Find the Cartesian equation of the plane containing P, Q and R.

[6]
a.

Given that П1 and П2 meet in a line LL, verify that the vector equation of LL can be given by r =(54074)+λ(12152)=⎜ ⎜54074⎟ ⎟+λ⎜ ⎜12152⎟ ⎟.

[3]
b.

Given that П3 is parallel to the line LL, show that a+2b5c=0a+2b5c=0.

[1]
c.

Show that 5a7c=45a7c=4.

[2]
d.i.

Given that П3 is equally inclined to both П1 and П2, determine two distinct possible Cartesian equations for П3.

[7]
d.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

for example

PQ=(158)PQ=158PR=(163)       A1A1

PQ×PR = 33i + 11j + 11k      (M1)A1

r.n = a.n

33x+11y+11z=(011)(331111)=22     (M1)

3x+y+z=2 or equivalent       A1

 

METHOD 2

assume plane can be written as ax+by+cz=1       M1

substituting each set of coordinates gives the system of equations:

a+6b7c=1

0a+b+c=1

2a+0b4c=1       A1

solving by GDC      (M1)

a=32b=12C=12       A1A1A1

32x+12y+12z=1 or equivalent

 

[6 marks]

a.

METHOD 1

substitution of equation of line into both equations of planes       M1

3(54+λ2)+(745λ2)=2       A1

(54+λ2)3λ(745λ2)=3       A1

 

METHOD 2

adding Π1 and Π2 gives 4x2y=5       M1

given  y=λx=54+λ2       A1

z=2y3x=745λ2       A1

r =(54074)+λ(12152)       AG

 

METHOD 3

n1 × n2(2410)       A1

=4(12152)       R1

common point 543(0)(74)=3 and 3(54)0(74)=2       A1 

 

[3 marks]

b.

normal to П3 is perpendicular to direction of L

(abc)(125)=0       A1

a+2b5c=0       AG

[1 mark]

c.

substituting (54074) into П3:      M1

5a47c4=1      A1

5a7c=4      AG

[2 marks]

d.i.

attempt to find scalar products for П1 and П3П2 and П3.

and equating       M1

3a+b+C11a2+b2+c2=a3bc11a2+b2+c2      M1

Note: Accept 3a+b+c=a3bc.

a+2b+c=0      A1

attempt to solve a+2b+c=0a+2b5c=05a7c=4      M1

a=45,b=25,c=0      A1

hence equation is 4x52y5=1

for second equation:

3a+b+C11a2+b2+c2=a3bc11a2+b2+c2      (M1)

2ab=0

attempt to solve 2ab=0a+2b5c=05a7c=4      M1

a=2b=4c=2      A1

hence equation is 2x4y2z=1

[7 marks]

d.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Show 51 related questions
Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Topic 3— Geometry and trigonometry

View options