User interface language: English | Español

Date May 2019 Marks available 1 Reference code 19M.2.AHL.TZ2.H_11
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Show that Question number H_11 Adapted from N/A

Question

The plane П1 contains the points P(1, 6, −7) , Q(0, 1, 1) and R(2, 0, −4).

The Cartesian equation of the plane П2 is given by x 3 y z = 3 .

The Cartesian equation of the plane П3 is given by a x + b y + c z = 1 .

Consider the case that П3 contains L .

Find the Cartesian equation of the plane containing P, Q and R.

[6]
a.

Given that П1 and П2 meet in a line L , verify that the vector equation of L can be given by r  = ( 5 4 0 7 4 ) + λ ( 1 2 1 5 2 ) .

[3]
b.

Given that П3 is parallel to the line L , show that a + 2 b 5 c = 0 .

[1]
c.

Show that 5 a 7 c = 4 .

[2]
d.i.

Given that П3 is equally inclined to both П1 and П2, determine two distinct possible Cartesian equations for П3.

[7]
d.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

for example

PQ = ( 1 5 8 ) PR = ( 1 6 3 )        A1A1

PQ × PR = 33i + 11j + 11k      (M1)A1

r.n = a.n

33 x + 11 y + 11 z = ( 0 1 1 ) ( 33 11 11 ) = 22      (M1)

3 x + y + z = 2  or equivalent       A1

 

METHOD 2

assume plane can be written as  a x + b y + c z = 1        M1

substituting each set of coordinates gives the system of equations:

a + 6 b 7 c = 1

0 a + b + c = 1

2 a + 0 b 4 c = 1        A1

solving by GDC      (M1)

a = 3 2 b = 1 2 C = 1 2        A1A1A1

3 2 x + 1 2 y + 1 2 z = 1  or equivalent

 

[6 marks]

a.

METHOD 1

substitution of equation of line into both equations of planes       M1

3 ( 5 4 + λ 2 ) + ( 7 4 5 λ 2 ) = 2        A1

( 5 4 + λ 2 ) 3 λ ( 7 4 5 λ 2 ) = 3        A1

 

METHOD 2

adding Π1 and Π2 gives  4 x 2 y = 5        M1

given   y = λ x = 5 4 + λ 2        A1

z = 2 y 3 x = 7 4 5 λ 2        A1

r  = ( 5 4 0 7 4 ) + λ ( 1 2 1 5 2 )        AG

 

METHOD 3

n1 × n2 ( 2 4 10 )        A1

= 4 ( 1 2 1 5 2 )        R1

common point  5 4 3 ( 0 ) ( 7 4 ) = 3 and  3 ( 5 4 ) 0 ( 7 4 ) = 2        A1 

 

[3 marks]

b.

normal to П3 is perpendicular to direction of L

( a b c ) ( 1 2 5 ) = 0        A1

a + 2 b 5 c = 0        AG

[1 mark]

c.

substituting  ( 5 4 0 7 4 ) into П3:      M1

5 a 4 7 c 4 = 1       A1

5 a 7 c = 4      AG

[2 marks]

d.i.

attempt to find scalar products for П1 and П3П2 and П3.

and equating       M1

3 a + b + C 11 a 2 + b 2 + c 2 = a 3 b c 11 a 2 + b 2 + c 2       M1

Note: Accept  3 a + b + c = a 3 b c .

a + 2 b + c = 0       A1

attempt to solve  a + 2 b + c = 0 a + 2 b 5 c = 0 5 a 7 c = 4       M1

a = 4 5 , b = 2 5 , c = 0       A1

hence equation is  4 x 5 2 y 5 = 1

for second equation:

3 a + b + C 11 a 2 + b 2 + c 2 = a 3 b c 11 a 2 + b 2 + c 2       (M1)

2 a b = 0

attempt to solve  2 a b = 0 a + 2 b 5 c = 0 5 a 7 c = 4       M1

a = 2 b = 4 c = 2       A1

hence equation is  2 x 4 y 2 z = 1

[7 marks]

d.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Show 51 related questions
Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Topic 3— Geometry and trigonometry

View options