User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.AHL.TZ1.H_10
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Show that Question number H_10 Adapted from N/A

Question

The following figure shows a square based pyramid with vertices at O(0, 0, 0), A(1, 0, 0), B(1, 1, 0), C(0, 1, 0) and D(0, 0, 1).

The Cartesian equation of the plane  Π 2 , passing through the points B , C and D , is  y + z = 1 .

The plane  Π 3  passes through O and is normal to the line BD.

Π 3  cuts AD and BD at the points P and Q respectively.

Find the Cartesian equation of the plane  Π 1 , passing through the points A , B and D.

[3]
a.

Find the angle between the faces ABD and BCD.

[4]
b.

Find the Cartesian equation of  Π 3 .

[3]
c.

Show that P is the midpoint of AD.

[4]
d.

Find the area of the triangle OPQ.

[5]
e.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

recognising normal to plane or attempting to find cross product of two vectors lying in the plane      (M1)

for example,  AB × AD = ( 0 1 0 ) × ( 1 0 1 ) = ( 1 0 1 )      (A1)

Π 1 : x + z = 1      A1

[3 marks]

a.

EITHER

( 1 0 1 ) ( 0 1 1 ) = 1 = 2 2 cos θ      M1A1

OR

| ( 1 0 1 ) × ( 0 1 1 ) | = 3 = 2 2 sin θ      M1A1

Note: M1 is for an attempt to find the scalar or vector product of the two normal vectors.

θ = 60 ( = π 3 )      A1

angle between faces is  20 ( = 2 π 3 )      A1

[4 marks]

b.

DB = ( 1 1 1 ) or  BD = ( 1 1 1 )      (A1)

Π 3 : x + y z = k      (M1)

Π 3 : x + y z = 0      A1

[3 marks]

c.

METHOD 1

line AD : (r =) ( 0 0 1 ) + λ ( 1 0 1 )      M1A1

intersects  Π 3 when  λ ( 1 λ ) = 0      M1

so  λ = 1 2      A1

hence P is the midpoint of AD      AG

 

METHOD 2

midpoint of AD is (0.5, 0, 0.5)      (M1)A1

substitute into  x + y z = 0      M1

0.5 + 0.5 − 0.5 = 0     A1

hence P is the midpoint of AD     AG

[4 marks]

d.

METHOD 1

OP = 1 2 , O P Q = 90 , O Q P = 60       A1A1A1

PQ = 1 6      A1

area  = 1 2 12 = 1 4 3 = 3 12      A1

 

METHOD 2

line BD : ( =) ( 1 1 0 ) + λ ( 1 1 1 )

λ = 2 3      (A1)

OQ = ( 1 3 1 3 2 3 )     A1

area =  1 2 | OP × OQ |      M1

OP = ( 1 2 0 1 2 )     A1

Note: This A1 is dependent on M1.

area =  3 12      A1

[5 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Show 51 related questions
Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Topic 3— Geometry and trigonometry

View options