User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.2.AHL.TZ1.6
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number 6 Adapted from N/A

Question

Consider the planes Π1 and Π2 with the following equations.

Π13x+2y+z=6

Π2x-2y+z=4

Find a Cartesian equation of the plane Π3 which is perpendicular to Π1 and Π2 and passes through the origin (0, 0, 0).

[3]
a.

Find the coordinates of the point where Π1, Π2 and Π3 intersect.

[2]
b.

Markscheme

attempt to find a vector perpendicular to Π1 and Π2 using a cross product        (M1)

321×1-21=2--2i+1-3j+-6-2k

=4-2-8=22-1-4        (A1)

equation is 4x-2y-8z=02x-y-4z=0        A1

 

[3 marks]

a.

attempt to solve 3 simultaneous equations in 3 variables       (M1)

4121,-1021,2321=1.95,-0.476,1.10        A1

 

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Show 45 related questions
Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Topic 3— Geometry and trigonometry

View options