Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 6 Reference code 17M.2.AHL.TZ1.H_7
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number H_7 Adapted from N/A

Question

Find the Cartesian equation of plane Π containing the points A(6, 2, 1) and B(3, 1, 1) and perpendicular to the plane x+2yz6=0.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

AB=(330)     (A1)

(330)×(121)     M1A1

=(333)     A1

xyz=k     M1

k=3 equation of plane Π is xyz=3 or equivalent     A1

METHOD 2

let plane Π be ax+by+cz=d

attempt to form one or more simultaneous equations:     M1

a+2bc=0     (1)     A1

6a+2b+c=d     (2)

3ab+c=d     (3)     A1

 

Note:     Award second A1 for equations (2) and (3).

 

attempt to solve     M1

EITHER

using GDC gives a=d3, b=d3, c=d3     (A1)

equation of plane Π is xyz=3 or equivalent     A1

OR

row reduction     M1

equation of plane Π is xyz=3 or equivalent     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Show 51 related questions
Topic 3— Geometry and trigonometry

View options