User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.AHL.TZ0.H_4
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number H_4 Adapted from N/A

Question

Consider the vectors a =  i   3 j    2 k, b  =   3 j  +   2 k.

Find a  ×  b.

[2]
a.

Hence find the Cartesian equation of the plane containing the vectors a and b, and passing through the point ( 1 ,   0 ,   1 ) .

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

a  ×  b  = 12 i    2 j    3 k     (M1)A1

[2 marks]

a.

METHOD 1

12 x 2 y 3 z = d    M1

12 × 1 2 × 0 3 ( 1 ) = d    (M1)

d = 9    A1

12 x 2 y 3 z = 9   ( or  12 x + 2 y + 3 z = 9 )

METHOD 2

( x y z ) ( 12 2 3 ) = ( 1 0 1 ) ( 12 2 3 )    M1A1

12 x 2 y 3 z = 9   ( or  12 x + 2 y + 3 z = 9 )    A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Show 45 related questions
Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Topic 3— Geometry and trigonometry

View options