User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.AHL.TZ0.H_4
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number H_4 Adapted from N/A

Question

Consider the vectors a == i  3 3j  2 2k, b = 3= 3j + 2+ 2k.

Find a ×× b.

[2]
a.

Hence find the Cartesian equation of the plane containing the vectors a and b, and passing through the point (1, 0, 1)(1, 0, 1).

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

a ×× b =12=12i  2 2j  3 3k     (M1)A1

[2 marks]

a.

METHOD 1

12x2y3z=d12x2y3z=d    M1

12×12×03(1)=d12×12×03(1)=d    (M1)

d=9d=9    A1

12x2y3z=9 (or 12x+2y+3z=9)12x2y3z=9 (or 12x+2y+3z=9)

METHOD 2

(xyz)(1223)=(101)(1223)xyz1223=1011223    M1A1

12x2y3z=9 (or 12x+2y+3z=9)    A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Show 45 related questions
Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Topic 3— Geometry and trigonometry

View options