User interface language: English | Español

Date May Example questions Marks available 3 Reference code EXM.3.AHL.TZ0.1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Hence and Deduce Question number 1 Adapted from N/A

Question

This question will investigate power series, as an extension to the Binomial Theorem for negative and fractional indices.

A power series in xx is defined as a function of the form f(x)=a0+a1x+a2x2+a3x3+...f(x)=a0+a1x+a2x2+a3x3+... where the aiR.

It can be considered as an infinite polynomial.

This is an example of a power series, but is only a finite power series, since only a finite number of the ai are non-zero.

We will now attempt to generalise further.

Suppose (1+x)q,qQ can be written as the power series a0+a1x+a2x2+a3x3+....

Expand (1+x)5 using the Binomial Theorem.

[2]
a.

Consider the power series 1x+x2x3+x4...

By considering the ratio of consecutive terms, explain why this series is equal to (1+x)1 and state the values of x for which this equality is true.

[4]
b.

Differentiate the equation obtained part (b) and hence, find the first four terms in a power series for (1+x)2.

[2]
c.

Repeat this process to find the first four terms in a power series for (1+x)3.

[2]
d.

Hence, by recognising the pattern, deduce the first four terms in a power series for (1+x)n, nZ+.

[3]
e.

By substituting x=0, find the value of a0.

[1]
f.

By differentiating both sides of the expression and then substituting x=0, find the value of a1.

[2]
g.

Repeat this procedure to find a2 and a3.

[4]
h.

Hence, write down the first four terms in what is called the Extended Binomial Theorem for (1+x)q,qQ.

[1]
i.

Write down the power series for 11+x2.

[2]
j.

Hence, using integration, find the power series for arctanx, giving the first four non-zero terms.

[4]
k.

Markscheme

1+5x+10x2+10x3+5x4+x5      M1A1

[2 marks]

a.

It is an infinite GP with a=1,r=x      R1A1

S=11(x)=11+x=(1+x)1      M1A1AG

[4 marks]

b.

(1+x)1=1x+x2x3+x4...

1(1+x)2=1+2x3x2+4x3...       A1

(1+x)2=12x+3x24x3+...       A1

 

[2 marks]

c.

2(1+x)3=2+6x12x2+20x3...      A1

(1+x)3=13x+6x210x3...      A1

[2 marks]

d.

(1+x)n=1nx+n(n+1)2!x2n(n+1)(n+2)3!x3...     A1A1A1

[3 marks]

e.

1q=a0a0=1      A1

[1 mark]

f.

q(1+x)q1=a1+2a2x+3a3x2+...       A1

a1=q       A1

[2 marks]

g.

q(q1)(1+x)q2=1×2a2+2×3a3x+...       A1

a2=q(q1)2!       A1

q(q1)(q2)(1+x)q3=1×2×3a3+...       A1

a3=q(q1)(q2)3!       A1

[4 marks]

h.

(1+x)q=1+qx+q(q1)2!x2+q(q1)(q2)3!x3...     A1

[1 mark]

i.

11+x2=1x2+x4x6+...    M1A1

[2 marks]

j.

arctanx+c=xx33+x55x77+...    M1A1

Putting x=0c=0        R1

So arctanx=xx33+x55x77+...        A1

[4 marks]

k.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.
[N/A]
i.
[N/A]
j.
[N/A]
k.

Syllabus sections

Topic 1—Number and algebra » AHL 1.10—Perms and combs, binomial with negative and fractional indices
Show 42 related questions
Topic 5 —Calculus » AHL 5.19—Maclaurin series
Topic 1—Number and algebra
Topic 5 —Calculus

View options