User interface language: English | Español

Date May 2021 Marks available 1 Reference code 21M.2.AHL.TZ2.9
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Write down Question number 9 Adapted from N/A

Question

Write down the first three terms of the binomial expansion of (1+t)-1(1+t)1 in ascending powers of tt.

[1]
a.

By using the Maclaurin series for cosxcosx and the result from part (a), show that the Maclaurin series for secxsecx up to and including the term in x4x4 is 1+x22+5x4241+x22+5x424.

[4]
b.

By using the Maclaurin series for arctanxarctanx and the result from part (b), find limx0(x arctan2xsecx-1)limx0(xarctan2xsecx1).

[3]
c.

Markscheme

1-t+t21t+t2               A1


Note: Accept 1, -t1, t and t2t2.

 

[1 mark]

a.

secx=11-x22!+x44!(-) (=(1-x22!+(x44!(-)))-1)secx=11x22!+x44!() (=(1x22!+(x44!()))1)                (M1)

t=cosx-1t=cosx1  or  secx=1-(cosx-1)+(cosx-1)2secx=1(cosx1)+(cosx1)2               (M1)

=1-(-x22!+x44!(-))+(-x22!+x44!(-))2=1(x22!+x44!())+(x22!+x44!())2               A1

=1+x22-x424+x44=1+x22x424+x44               A1

so the Maclaurin series for secxsecx up to and including the term in x4x4 is 1+x22+5x4241+x22+5x424               AG


Note:
Condone the absence of ‘…’ 

 

[4 marks]

b.

arctan2x=2x-(2x)33+arctan2x=2x(2x)33+

limx0(x arctan2xsecx-1)=limx0(x(2x-(2x)33+)(1+x22+5x424)-1)limx0(xarctan2xsecx1)=limx0x(2x(2x)33+)(1+x22+5x424)1                      M1

=limx0(2x2-8x43+x22+5x424)=limx02x28x43+x22+5x424              A1

=limx0(2x2(1-4x23)x22(1+5x212))=limx02x2(14x23)x22(1+5x212)

=4=4              A1

 

Note: Condone missing ‘lim’ and errors in higher derivatives.
Do not award M1 unless xx is replaced by 2x2x in arctanarctan.

 

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » AHL 1.10—Perms and combs, binomial with negative and fractional indices
Show 42 related questions
Topic 5 —Calculus » AHL 5.19—Maclaurin series
Topic 1—Number and algebra
Topic 5 —Calculus

View options