Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.2.hl.TZ1.9
Level HL only Paper 2 Time zone TZ1
Command term Show that Question number 9 Adapted from N/A

Question

The following graph shows the two parts of the curve defined by the equation x2y=5y4, and the normal to the curve at the point P(2 , 1).

 

Show that there are exactly two points on the curve where the gradient is zero.

[7]
a.

Find the equation of the normal to the curve at the point P.

[5]
b.

The normal at P cuts the curve again at the point Q. Find the x-coordinate of Q.

[3]
c.

The shaded region is rotated by 2π about the y-axis. Find the volume of the solid formed.

[7]
d.

Markscheme

differentiating implicitly:       M1

2xy+x2dydx=4y3dydx     A1A1

Note: Award A1 for each side.

if dydx=0 then either x=0 or y=0       M1A1

x=0 two solutions for y(y=±45)      R1

y=0 not possible (as 0 ≠ 5)     R1

hence exactly two points      AG

Note: For a solution that only refers to the graph giving two solutions at  x=0 and no solutions for y=0 award R1 only.

[7 marks]

a.

at (2, 1)  4+4dydx=4dydx     M1

dydx=12     (A1)

gradient of normal is 2       M1

1 = 4 + c       (M1)

equation of normal is y=2x3     A1

[5 marks]

b.

substituting      (M1)

x2(2x3)=5(2x3)4 or (y+32)2y=5y4       (A1)

x=0.724      A1

[3 marks]

c.

recognition of two volumes      (M1)

volume 1=π4515y4ydy(=101π=3.178)      M1A1A1

Note: Award M1 for attempt to use πx2dyA1 for limits, A1 for 5y4y Condone omission of π at this stage.

volume 2

EITHER

=13π×22×4(=16.75)     (M1)(A1)

OR

=π13(y+32)2dy(=16π3=16.75)     (M1)(A1)

THEN

total volume = 19.9      A1

[7 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Local maximum and minimum values.
Show 36 related questions

View options