Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 11 Adapted from N/A

Question

Let y=exsinx.

Consider the function f  defined by f(x)=exsinx, 0.

The curvature at any point (x,{\text{ }}y) on a graph is defined as \kappa  = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}.

Find an expression for \frac{{{\text{d}}y}}{{{\text{d}}x}}.

[2]
a.

Show that \frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^x}\cos x.

[2]
b.

Show that the function f has a local maximum value when x = \frac{{3\pi }}{4}.

[2]
c.

Find the x-coordinate of the point of inflexion of the graph of f.

[2]
d.

Sketch the graph of f, clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.

[3]
e.

Find the area of the region enclosed by the graph of f and the x-axis.

The curvature at any point (x,{\text{ }}y) on a graph is defined as \kappa  = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}.

[6]
f.

Find the value of the curvature of the graph of f at the local maximum point.

[3]
g.

Find the value \kappa for x = \frac{\pi }{2} and comment on its meaning with respect to the shape of the graph.

[2]
h.

Markscheme

\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x{\text{ }}\left( { = {{\text{e}}^x}(\sin x + \cos x)} \right)    M1A1

[2 marks]

a.

\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x)    M1A1

= 2{{\text{e}}^x}\cos x    AG

[2 marks]

b.

\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^{\frac{{3\pi }}{4}}}\left( {\sin \frac{{3\pi }}{4} + \cos \frac{{3\pi }}{4}} \right) = 0    R1

\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} < 0    R1

hence maximum at x = \frac{{3\pi }}{4}     AG

[2 marks]

c.

\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0 \Rightarrow 2{{\text{e}}^x}\cos x = 0    M1

\Rightarrow x = \frac{\pi }{2}    A1

 

Note: Award M1A0 if extra zeros are seen.

 

[2 marks]

d.

N16/5/MATHL/HP1/ENG/TZ0/11.e/M

correct shape and correct domain     A1

max at x = \frac{{3\pi }}{4}, point of inflexion at x = \frac{\pi }{2}     A1

zeros at x = 0 and x = \pi      A1

 

Note: Penalize incorrect domain with first A mark; allow FT from (d) on extra points of inflexion.

 

[3 marks]

e.

EITHER

\int_0^x {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi  - \int_0^\pi  {{{\text{e}}^x}\cos x{\text{d}}x} }    M1A1

\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi  - \left( {[{{\text{e}}^x}\cos x]_0^x + \int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x} } \right)}    A1

OR

\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [ - {{\text{e}}^x}\cos x]_0^\pi  + \int_0^\pi  {{{\text{e}}^x}\cos x{\text{d}}x} }    M1A1

\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [ - {{\text{e}}^x}\cos x]} _0^\pi  + \left( {[{{\text{e}}^x}\sin x]_0^\pi  - \int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x} } \right)    A1

THEN

\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}\left( {[{{\text{e}}^x}\sin x]_0^x - [{{\text{e}}^x}\cos x]_0^x} \right)}    M1A1

\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}({{\text{e}}^x} + 1)}    A1

[6 marks]

f.

\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0    (A1)

 \frac{{{d^2}y}}{{d{x^2}}} = 2{e^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} =  - \sqrt 2 {e^{\frac{{3\pi }}{4}}} (A1)

\kappa  = \frac{{\left| { - \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}} \right|}}{1} = \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}    A1

[3 marks]

g.

\kappa  = 0    A1

the graph is approximated by a straight line     R1

[2 marks]

h.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Local maximum and minimum values.
Show 36 related questions

View options