Date | May 2014 | Marks available | 4 | Reference code | 14M.1.hl.TZ2.13 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 13 | Adapted from | N/A |
Question
The graph of the function f(x)=x+1x2+1 is shown below.
The point (1, 1) is a point of inflexion. There are two other points of inflexion.
Find f′(x).
Hence find the x-coordinates of the points where the gradient of the graph of f is zero.
Find f″ expressing your answer in the form \frac{{p(x)}}{{{{({x^2} + 1)}^3}}}, where p(x) is a polynomial of degree 3.
Find the x-coordinates of the other two points of inflexion.
Find the area of the shaded region. Express your answer in the form \frac{\pi }{a} - \ln \sqrt b , where a and b are integers.
Markscheme
(a) f'(x) = \frac{{\left( {{x^2} + 1} \right) - 2x(x + 1)}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{ }}\left( { = \frac{{ - {x^2} - 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}} \right) M1A1
[2 marks]
\frac{{ - {x^2} - 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0
x = - 1 \pm \sqrt 2 A1
[1 mark]
f''(x) = \frac{{( - 2x - 2){{\left( {{x^2} + 1} \right)}^2} - 2(2x)\left( {{x^2} + 1} \right)\left( { - {x^2} - 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}} A1A1
Note: Award A1 for ( - 2x - 2){\left( {{x^2} + 1} \right)^2} or equivalent.
Note: Award A1 for - 2(2x)\left( {{x^2} + 1} \right)\left( { - {x^2} - 2x + 1} \right) or equivalent.
= \frac{{( - 2x - 2)\left( {{x^2} + 1} \right) - 4x\left( { - {x^2} - 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}
= \frac{{2{x^3} + 6{x^2} - 6x - 2}}{{{{\left( {{x^2} + 1} \right)}^3}}} A1
\left( { = \frac{{2\left( {{x^3} + 3{x^2} - 3x - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}} \right)
[3 marks]
recognition that (x - 1) is a factor (R1)
(x - 1)\left( {{x^2} + bx + c} \right) = \left( {{x^3} + 3{x^2} - 3x - 1} \right) M1
\Rightarrow {x^2} + 4x + 1 = 0 A1
x = - 2 \pm \sqrt 3 A1
Note: Allow long division / synthetic division.
[4 marks]
\int_{ - 1}^0 {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x} M1
\int {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x = \int {\frac{x}{{{x^2} + 1}}{\text{d}}x + \int {\frac{1}{{{x^2} + 1}}{\text{d}}x} } } M1
= \frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x) A1A1
= \left[ {\frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)} \right]_{ - 1}^0 = \frac{1}{2}\ln 1 + \arctan 0 - \frac{1}{2}\ln 2 - \arctan ( - 1) M1
= \frac{\pi }{4} - \ln \sqrt 2 A1
[6 marks]