Date | May 2015 | Marks available | 4 | Reference code | 15M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Determine | Question number | 6 | Adapted from | N/A |
Question
In triangle ABC, BC=√3 cm, AˆBC=θ and BˆCA=π3.
Show that length AB=3√3cosθ+sinθ.
Given that AB has a minimum value, determine the value of θ for which this occurs.
Markscheme
any attempt to use sine rule M1
ABsinπ3=√3sin(2π3−θ) A1
=√3sin2π3cosθ−cos2π3sinθ A1
Note: Condone use of degrees.
=√3√32cosθ+12sinθ A1
AB√32=√3√32cosθ+12sinθ
∴ AG
[4 marks]
METHOD 1
({\text{AB}})' = \frac{{ - 3\left( { - \sqrt 3 \sin \theta + \cos \theta } \right)}}{{{{\left( {\sqrt 3 \cos \theta + \sin \theta } \right)}^2}}} M1A1
setting ({\text{AB}})' = 0 M1
\tan \theta = \frac{1}{{\sqrt 3 }}
\theta = \frac{\pi }{6} A1
METHOD 2
{\text{AB}} = \frac{{\sqrt 3 \sin \frac{\pi }{3}}}{{\sin \left( {\frac{{2\pi }}{3} - \theta } \right)}}
AB minimum when \sin \left( {\frac{{2\pi }}{3} - \theta } \right) is maximum M1
\sin \left( {\frac{{2\pi }}{3} - \theta } \right) = 1 (A1)
\frac{{2\pi }}{3} - \theta = \frac{\pi }{2} M1
\theta = \frac{\pi }{6} A1
METHOD 3
shortest distance from B to AC is perpendicular to AC R1
\theta = \frac{\pi }{2} - \frac{\pi }{3} = \frac{\pi }{6} M1A2
[4 marks]
Total [8 marks]