Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Determine Question number 6 Adapted from N/A

Question

In triangle ABC, BC=3 cm, AˆBC=θ and BˆCA=π3.

Show that length AB=33cosθ+sinθ.

[4]
a.

Given that AB has a minimum value, determine the value of θ for which this occurs.

[4]
b.

Markscheme

any attempt to use sine rule     M1

ABsinπ3=3sin(2π3θ)     A1

=3sin2π3cosθcos2π3sinθ     A1

 

Note:     Condone use of degrees.

 

=332cosθ+12sinθ     A1

AB32=332cosθ+12sinθ

    AG

[4 marks]

a.

METHOD 1

({\text{AB}})' = \frac{{ - 3\left( { - \sqrt 3 \sin \theta  + \cos \theta } \right)}}{{{{\left( {\sqrt 3 \cos \theta  + \sin \theta } \right)}^2}}}     M1A1

setting ({\text{AB}})' = 0     M1

\tan \theta  = \frac{1}{{\sqrt 3 }}

\theta  = \frac{\pi }{6}     A1

METHOD 2

{\text{AB}} = \frac{{\sqrt 3 \sin \frac{\pi }{3}}}{{\sin \left( {\frac{{2\pi }}{3} - \theta } \right)}}

AB minimum when \sin \left( {\frac{{2\pi }}{3} - \theta } \right) is maximum     M1

\sin \left( {\frac{{2\pi }}{3} - \theta } \right) = 1     (A1)

\frac{{2\pi }}{3} - \theta  = \frac{\pi }{2}     M1

\theta  = \frac{\pi }{6}     A1

METHOD 3

shortest distance from B to AC is perpendicular to AC     R1

\theta  = \frac{\pi }{2} - \frac{\pi }{3} = \frac{\pi }{6}     M1A2

[4 marks]

Total [8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Local maximum and minimum values.
Show 31 related questions

View options