Date | May 2015 | Marks available | 4 | Reference code | 15M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Determine | Question number | 6 | Adapted from | N/A |
Question
In triangle \({\text{ABC, BC}} = \sqrt 3 {\text{ cm}}\), \({\rm{A\hat BC}} = \theta \) and \({\rm{B\hat CA}} = \frac{\pi }{3}\).
Show that length \({\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta + \sin \theta }}\).
Given that \(AB\) has a minimum value, determine the value of \(\theta \) for which this occurs.
Markscheme
any attempt to use sine rule M1
\(\frac{{{\text{AB}}}}{{\sin \frac{\pi }{3}}} = \frac{{\sqrt 3 }}{{\sin \left( {\frac{{2\pi }}{3} - \theta } \right)}}\) A1
\( = \frac{{\sqrt 3 }}{{\sin \frac{{2\pi }}{3}\cos \theta - \cos \frac{{2\pi }}{3}\sin \theta }}\) A1
Note: Condone use of degrees.
\( = \frac{{\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}\cos \theta + \frac{1}{2}\sin \theta }}\) A1
\(\frac{{{\text{AB}}}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}\cos \theta + \frac{1}{2}\sin \theta }}\)
\(\therefore {\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta + \sin \theta }}\) AG
[4 marks]
METHOD 1
\(({\text{AB}})' = \frac{{ - 3\left( { - \sqrt 3 \sin \theta + \cos \theta } \right)}}{{{{\left( {\sqrt 3 \cos \theta + \sin \theta } \right)}^2}}}\) M1A1
setting \(({\text{AB}})' = 0\) M1
\(\tan \theta = \frac{1}{{\sqrt 3 }}\)
\(\theta = \frac{\pi }{6}\) A1
METHOD 2
\({\text{AB}} = \frac{{\sqrt 3 \sin \frac{\pi }{3}}}{{\sin \left( {\frac{{2\pi }}{3} - \theta } \right)}}\)
\(AB\) minimum when \(\sin \left( {\frac{{2\pi }}{3} - \theta } \right)\) is maximum M1
\(\sin \left( {\frac{{2\pi }}{3} - \theta } \right) = 1\) (A1)
\(\frac{{2\pi }}{3} - \theta = \frac{\pi }{2}\) M1
\(\theta = \frac{\pi }{6}\) A1
METHOD 3
shortest distance from \(B\) to \(AC\) is perpendicular to \(AC\) R1
\(\theta = \frac{\pi }{2} - \frac{\pi }{3} = \frac{\pi }{6}\) M1A2
[4 marks]
Total [8 marks]