User interface language: English | Español

Date November 2009 Marks available 7 Reference code 09N.2.hl.TZ0.3
Level HL only Paper 2 Time zone TZ0
Command term Find and Show that Question number 3 Adapted from N/A

Question

The diagram below shows two concentric circles with centre O and radii 2 cm and 4 cm.

The points P and Q lie on the larger circle and \({\rm{P}}\hat {\text{O}}{\text{Q}} = x\) , where \(0 < x < \frac{\pi }{2}\) .


(a)     Show that the area of the shaded region is \(8\sin x - 2x\) .

(b)     Find the maximum area of the shaded region.

Markscheme

(a)     shaded area area of triangle area of sector, i.e.     (M1)

\(\left( {\frac{1}{2} \times {4^2}\sin x} \right) - \left( {\frac{1}{2}{2^2}x} \right) = 8\sin x - 2x\)     A1A1AG

 

(b)     EITHER

any method from GDC gaining \(x \approx 1.32\)     (M1)(A1)

maximum value for given domain is \(5.11\)     A2

OR

\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 8\cos x - 2\)     A1

set \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\), hence \(8\cos x - 2 = 0\)     M1

\(\cos x = \frac{1}{4} \Rightarrow x \approx 1.32\)     A1

hence \({A_{\max }} = 5.11\)     A1

 

[7 marks]

Examiners report

Generally a well answered question.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Local maximum and minimum values.
Show 31 related questions

View options