Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 1 Reference code 14M.1.hl.TZ2.13
Level HL only Paper 1 Time zone TZ2
Command term Find and Hence Question number 13 Adapted from N/A

Question

The graph of the function f(x)=x+1x2+1 is shown below.


The point (1, 1) is a point of inflexion. There are two other points of inflexion.

Find f(x).

[2]
a.

Hence find the x-coordinates of the points where the gradient of the graph of f is zero.

[1]
b.

Find f expressing your answer in the form \frac{{p(x)}}{{{{({x^2} + 1)}^3}}}, where p(x) is a polynomial of degree 3.

[3]
c.

Find the x-coordinates of the other two points of inflexion.

[4]
d.

Find the area of the shaded region. Express your answer in the form \frac{\pi }{a} - \ln \sqrt b , where a and b are integers.

[6]
e.

Markscheme

(a)     f'(x) = \frac{{\left( {{x^2} + 1} \right) - 2x(x + 1)}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{ }}\left( { = \frac{{ - {x^2} - 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}} \right)     M1A1

[2 marks]

a.

\frac{{ - {x^2} - 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0

x =  - 1 \pm \sqrt 2     A1

[1 mark]

b.

f''(x) = \frac{{( - 2x - 2){{\left( {{x^2} + 1} \right)}^2} - 2(2x)\left( {{x^2} + 1} \right)\left( { - {x^2} - 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}     A1A1

 

Note:     Award A1 for ( - 2x - 2){\left( {{x^2} + 1} \right)^2} or equivalent.

 

Note:     Award A1 for - 2(2x)\left( {{x^2} + 1} \right)\left( { - {x^2} - 2x + 1} \right) or equivalent.

 

= \frac{{( - 2x - 2)\left( {{x^2} + 1} \right) - 4x\left( { - {x^2} - 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}

= \frac{{2{x^3} + 6{x^2} - 6x - 2}}{{{{\left( {{x^2} + 1} \right)}^3}}}     A1

\left( { = \frac{{2\left( {{x^3} + 3{x^2} - 3x - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}} \right)

[3 marks]

c.

recognition that (x - 1) is a factor     (R1)

(x - 1)\left( {{x^2} + bx + c} \right) = \left( {{x^3} + 3{x^2} - 3x - 1} \right)     M1

\Rightarrow {x^2} + 4x + 1 = 0     A1

x =  - 2 \pm \sqrt 3     A1

 

Note:     Allow long division / synthetic division.

 

[4 marks]

d.

\int_{ - 1}^0 {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x}     M1

\int {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x = \int {\frac{x}{{{x^2} + 1}}{\text{d}}x + \int {\frac{1}{{{x^2} + 1}}{\text{d}}x} } }     M1

= \frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)     A1A1

= \left[ {\frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)} \right]_{ - 1}^0 = \frac{1}{2}\ln 1 + \arctan 0 - \frac{1}{2}\ln 2 - \arctan ( - 1)     M1

= \frac{\pi }{4} - \ln \sqrt 2     A1

[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Local maximum and minimum values.
Show 31 related questions

View options