Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.1.hl.TZ1.7
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 7 Adapted from N/A

Question

Let y=arccos(x2)

Find dydx.

[2]
a.

Find 10arccos(x2)dx.

[7]
b.

Markscheme

y=arccos(x2)dydx=121(x2)2(=14x2)    M1A1

Note: M1 is for use of the chain rule.

[2 marks]

a.

attempt at integration by parts     M1

u=arccos(x2)dudx=14x2

dvdx=1v=x     (A1)

10arccos(x2)dx=[xarccos(x2)]10+1014x2dx      A1

using integration by substitution or inspection      (M1)

[xarccos(x2)]10+[(4x2)12]10      A1

Note: Award A1 for (4x2)12 or equivalent.

Note: Condone lack of limits to this point.

attempt to substitute limits into their integral     M1

=π33+2     A1

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Definite integrals.

View options