User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ1.4
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 4 Adapted from N/A

Question

Given that \(\int_{ - 2}^2 {f\left( x \right){\text{d}}x = 10} \) and \(\int_0^2 {f\left( x \right){\text{d}}x = 12} \), find

\(\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x} \).

[4]
a.

\(\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x} \).

[2]
b.

Markscheme

\(\int_{ - 2}^0 {f\left( x \right){\text{d}}x = 10}  - 12 =  - 2\)     (M1)(A1)

\(\int_{ - 2}^0 {2{\text{d}}x = \left[ {2x} \right]} _{ - 2}^0 = 4\)     A1

\(\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x}  = 2\)     A1

[4 marks]

a.

\(\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x}  = \int_0^2 {f\left( x \right){\text{d}}x} \)    (M1)

= 12     A1

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Definite integrals.

View options