User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.2.hl.TZ0.5
Level HL only Paper 2 Time zone TZ0
Command term Determine and Express Question number 5 Adapted from N/A

Question

A function is defined by \(f(x) = {x^2} + 2,{\text{ }}x \ge 0\). A region \(R\) is enclosed by \(y = f(x)\),the \(y\)-axis and the line \(y = 4\).

(i)     Express the area of the region \(R\) as an integral with respect to \(y\).

(ii)     Determine the area of \(R\), giving your answer correct to four significant figures.

[3]
a.

Find the exact volume generated when the region \(R\) is rotated through \(2\pi \) radians about the \(y\)-axis.

[3]
b.

Markscheme

(i)     \({\text{area}} = \int_2^4 {\sqrt {y - 2} {\text{d}}y} \)     M1A1

(ii)     \( = 1.886{\text{ (4 sf only)}}\)     A1

 

Note:     Award M0A0A1 for finding \(1.886\) from \(\int_0^{\sqrt 2 } {4 - f(x){\text{d}}x} \).

Award A1FT for a 4sf answer obtained from an integral involving \(x\).

[3 marks]

a.

\({\text{volume}} = \pi \int_2^4 {(y - 2){\text{d}}y} \)     (M1)

 

Note:     Award M1 for the correct integral with incorrect limits.

\( = \pi \left[ {\frac{{{y^2}}}{2} - 2y} \right]_2^4\)     (A1)

\( = 2\pi {\text{ (exact only)}}\)     A1

[3 marks]

Total [6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Definite integrals.

View options