Date | May 2014 | Marks available | 4 | Reference code | 14M.1.hl.TZ1.5 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find and Hence | Question number | 5 | Adapted from | N/A |
Question
Use the identity cos2θ=2cos2θ−1 to prove that cos12x=√1+cosx2, 0⩽x⩽π.
[2]
a.
Find a similar expression for sin12x, 0⩽x⩽π.
[2]
b.
Hence find the value of ∫π20(√1+cosx+√1−cosx)dx.
[4]
c.
Markscheme
cosx=2cos212x−1
cos12x=±√1+cosx2 M1
positive as 0⩽x⩽π R1
cos12x=√1+cosx2 AG
[2 marks]
a.
cos2θ=1−2sin2θ (M1)
sin12x=√1−cosx2 A1
[2 marks]
b.
√2∫π20cos12x+sin12xdx A1
=√2[2sin12x−2cos12x]π20 A1
=√2(0)−√2(0−2) A1
=2√2 A1
[4 marks]
c.
Examiners report
[N/A]
a.
[N/A]
b.
[N/A]
c.